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1 Governing Equations and Algorithms

In hierarchical modeling, governing equation in each model is the same as the general
groundwater governing equation as shown below

SS%=V(K0VH)+q 1)

Where S, is the aquifer specific storage coefficient [L™], H is piezometric head [L], t is
time [T], V is the gradient operator [L™"], K is the saturated hydraulic conductivity tensor
[L/T], q represents source (positive) or sink (negative) terms [ L*/(L°T)] including
pumping/injecting wells, streams, lakes, drains etc.

With the following well-defined boundary conditions (BCs) and initial conditions (ICs),
Eq(1) can be solved numerically.

Hl = f(Xt Dirichlet
{ |, =f(X1) irichle 2

H|_, = g(Xt) Neumann
IC: H(%,0) = h(X)

Where I'1 is the computational domain boundary on which H distribution, f, is known, I'2 is

the boundary where a known flux, g, is specified, X is the spatial vector and h(X) is head

distribution over the whole computational domain at initial time step t=0.

More specifically, assuming that there are L nested model levels and P(l) patches in the Ith
model level in a multi-scale modeling system denoting as MP' [p=1, P(l), I=1,L] and
illustrating hierarchically in Fig.1. The naming convention used here will be described as:

® Main Model: the most top level model, referred to as regional model or coarse model

® Parent model: finer grid, at least has one child model

® Child model: finer grid than its parent model, referred to as patch model, has only one
parent model, orphan models are not allowable due to the absence of BCs

The governing equations in this system, then, can be given as the following,
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where the combination subscript (p, 1) refers to as a submodel or a child model that is the pth
patch in the Ith model level, i is outward normal vector of boundary T'.It should be
noted that material parameters or source/sink terms may vary across scales, which means that
material parameters or source/sink terms in different model could be different --- more details

would be resolved as model grid becomes finer and finer.
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Figure 1 Hierarchical Modeling System

In general, boundary conditions (BCs) and initial conditions (ICs) are only provided in the
main model (i.e. the largest scale model). In order to obtain solutions to each level’s models,
their BCs and ICs must be well-imposed. This can be achieved by an interactive way:

(1) With the given BCs and ICs, main model can be solved numerically and its head, H°,
will be obtained throughout the whole computational domain.

(2) Head, H"*, along the interfaces of main model and its subsequent models (patches) can
be interpolated from H?:; or fluxes, K"'VHP"!efi, crossing the interfaces can be
calculated from H® too. ICs of child models can be obtained by interpolating heads
inside the domains from H°. These calculation details will be given in next sections.

(3) With HP or KP'VHP" efi known on domain boundaries and interpolated ICs,



(4)

(%)

(6)

HP* (p=1P(l)) can be solved and ready for use in its next level models.
Similarly, once H”' (p=21,P(I);1 =1,L—-1) are solved with the appropriate BCs and

ICs derived fromH "', head of their parent model; their H"'"" or KP'"'VH"'" ef

along the interfaces of parent-child models can be calculated in the same way until | =1L.
This procedure is called as downscaling.

As the head, H ™", in the last model level have been calculated, they will be used as the
base head to update the heads along the interfaces. This will result in a change in the BCs
of their parent models (upper level models): H"™* or KP?VH"""efi along
interface of parent-child models will be calculated from their child model head, H ”', and
H ' is updated until main model (1 =0) is reached. This procedure is called as up
scaling.

Repeat step (1) to (5) until the maximum head difference at current iteration and previous
iteration meets a given convergent criterion, then the whole modeling system is stopped.

Flow chart of the mentioned down and up scaling interaction procedures in a hierarchical
modeling system is shown in Fig. 2 and Fig.3.
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Figure 2 Flow chart of down and up scaling interaction procedures in a hierarchical

modeling system
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As to a transient case, temporal loop is needed to accomplish the time marching procedure
in multiscale modeling system. If no temporal scale issue is considered, the whole down and
up scaling loops for all models in the system can be implemented in one time step, once a
convergence is achieved, then proceed to next time step. Fig.4 shows the flow chart in
transient case without nested time steps in the child model.

Downscaling

t=0

Upscaling

1l

Downscaling

t=At

Upscaling t

1§

1l

Downscaling  /

t=iAt

Upscaling

Figure 4 Flow chart of down and up scaling interaction procedure in a transient
multiscale modeling system with uniform time step

Groundwater flow may include variations at well scale, site scale and regional scale across
disparate length and time. This requires grid and time step constraints to be respected in order
to provide accurate results and make computation more efficient. Multiple spatial scales can
be resolved by appropriate selection of the grid size in every level model in a hierarchical way
as illustrated in Fig.5.
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Figure 5. Hierarchical modeling to resolve multiple spatial scales

As to the multiple temporal scales, a nested time stepping should be applied, which means
that multiple small time steps of a child model are nested in one large time step of its parent
model and a temporal information across different scales propagating between upper and
lower model levels will be needed due to the fact that BCs on the interfaces of parent-child
models are time dependent in a transient state. Therefore, in multiscale modeling, the nested
time stepping will also be presented in a hierarchical way, which can be described as below.

1)
)

©)

(4)

Time step, At', at each model level would be different from each other, but should be
the same in each patch model in the same level

Downscaling procedure will start from the main model and its initial conditions are
needed to conduct a steady-state downscaling-upscaling loop at t=0 for all level’s models
such that initial conditions for every submodel become available. Otherwise, initial
conditions for every submodel must be given.

To advance to next time step with known heads at previous time step in nested time
stepping algorithm is totally different from that of uniform time stepping algorithm as
shown in Fig.4 since there are not only shared “time nodes” in the “time grid” system
(solid lines in Fig.6) but also non-shared ones (dash lines in Fig.6). Information
propagating should be carried on at the same time and along the same interface of
parent-child models. Interpolation would be involved both spatially and temporally in
this algorithm. Considering one time step in the main model as one unit of
downscaling-upscaling loop in the nested time stepping algorithm, a local information
updating approach (LIUA) is presented and described in the following steps.

Starting with the main model to obtain H? , head at current time level n, LIUA will
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solve the transient equation with givenH head at previous time level n-1, as its

initial conditions. These heads, H® and H?, will be used to interpolate those heads

on the interfaces of the main and its child models to be used as BCs of thoses child
models. Temporal interpolation would be necessary if time step in child models is not the
same as that of the main model, whereas there is no need to do any temporal interpolation
when “time node” is shared by both child model and its parent model (solid lines in
Fig.6).

With current BCs derived from model level | -1 are known and ICs from the previous
time step, transient equations solving will be implemented in the most first time step,
At'in model level I, then temporal interpolation will be conducted for heads at the
next nested time step At'™ (At'>At'"', and usually, At'" can be designed to be a

factor of At') along with non-shared “time node”, these heads would be used as BCs of
models at level 1+1. In model level |+1, again, with these BCs and I1Cs from previous
time step, transient equations solving and temporal interpolation can be done in the first

time step At and BCs for model level 1+2 at nested time step At'*? (again,

At"™>At"? and At'*? could be a factor of At'™) can be obtained, ..., this procedure
can be continuously applied until the last child model is reached.

Once solving of transient equations in the first time step in the last child model is
completed, all heads at those time steps before the first shared “time node” will be
obtained. Shared “time node” heads then will be used to create a new updating ICs for its
parent model to advance to parent model’s next time step calculation. If this shared “time
node” does share by this parent model’s parent model, the updating will be proceeding
upward till this shared “time node” path line is ended.

At a model level where the shared “time node” path line ended, with the updated ICs and
BCs derived from its parent model, head at second (next) time step can be solved, and
then, following the same procedure done for the first time step in step(5), going through
step (6) again, the whole nested time steps within this unit will be covered and the
updated heads at each nested time step (different temporal scales) will be given and
available for next iterative loop. The down scaling-upscaling iterative loop will continue
within this down scaling-upscaling unit until the convergent criterion is met.

Once convergence occurs in the previous down scaling-upscaling unit, heads in each
model will be used as the ICs of next down scaling-upscaling unit, then repeat step (5) to
(8) until the total length of simulation time is reached.

Fig.6 shows the flow chart of the LIUA with an example of one patch-4 level system in

one down scaling-upscaling unit. The sequential operation order is also illustrated in the
figure. Table 1 gives the total number of each kind of operation such as PDE solving,
temporal interpolation and boundary condition interpolation occurring in each model during
one down and up scaling loop.

Table 1 Total number of operations occurring during one down and up scaling loop

Level | Main Model Level 1 Level 2 | Level 3
Operation MO M? M? M3
Solving Eq(1) 1 2 4 8
Temporal Interpolation 1 2 4 /
Boundary Conditions for Downscaling 2 4 8 /
Boundary Conditions for Upscaling / 1 2 4




The overall flow chart is shown in Fig.7. As to multiple patches, same procedure will be
applied to each patch and updating in all patches in the same model level must be completed
before proceeding down scaling/up scaling to their parent or child models.

It is very clear from the proposed LIUA that both spatial and temporal information are
immediately propagated between parent and child models. This reflects the mechanism of
time response process in the real world.
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Figure 6. Hierarchical modeling to resolve multiple temporal scales ( one unit of LIUA)
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2 Discretization

2.1 Numerical Scheme

Solving Eq(1) or Eq(3) numerically needs discretizing the PDE in a computational domain
to form a linear algebra system with head at each discretized node as unknown. In our
multiscale modeling system, computational domain is discretized with no gap and not
overlapping brick (3D) or rectangular (2D) cells and node at center of the cell as shown in
Fig.8. The PDE would be approximated in each cell by using finite volume method (FVM)
and then yields a nodal based discretized equation.

,..J(

wat::t?

Discretized

Figure 8. Domain discretization

Fig.9 shows a typical cell of node P and its neighboring nodes E, S, W, N, T, B. Lines
connecting node P and its neighboring nodes E, S, W, N, T, B have intersection with cell
faces at face node e, s, w, n, t, b respectively.

Taking integral from Eq(1) over the computational domain, V, gives

jj S, —dV —jV”v-(KVH)dv +jvﬂqdv (4)

Dividing V into different N cells, Eq(4) can be rewritten as

10
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where AV, is volume of 3D cell e, which is bounded and closed by cell faces E, S, W, N, T,

B; or volume of 2D cell e with unit thickness in TB direction. There would be only cell faces
E,S, W, Nina2D cell.
For each cell e, from Eq(5), gives

ms allay; v mv (KVH)dV+quv (6)

Applying the divergence theorem, also known as Gauss-Ostrogradsky theorem to the first
term of right hand side in Eq.(6), Eq.(6) becomes

jjs v = ﬁKVH d3+”jqdv (7

where Se in the surface integral term is denoting cell face in cell e, dS =fdS is an area
vector of a cell face with the same direction as its outward normal vector and magnitude of
the area dS. Assuming that quantities are constantly distributed within each cell face and
represented by the nodal value, Eq(7) can be rewritten as

oH .
(8,5 [[[dV =" (KVH),, oS, + (@), [[[dV ®)
at AV, Se AV,
Or
(s, )AV —as, Kk, P as K,
on|, on|,
as, K. H _ask M| L )
"on|, *on|,
asK ) _as k, M 4 q.av,
on |, b

where AS_, AS,, AS,, AS,, AS, and AS, are area of the cell faces ofe, w, n, s, t, and b
( AV =AS_AS AS, =AS AS.AS, ). Accordingly, K., K,, K,, K;, K,  and K, are

w

conductivities evaluated on the cell faces of e, w, n, s, t, and b respectively. Applying
backward finite different scheme to the time variation term and implicit central scheme to
those first order derivatives with respect to cell face normal directions on RHS of Eq(9), gives

Hm+1_Hm Hm+1_Hm+1 Hm+1_Hm+1
S.AV, P —Tp _ag g e “Te ag g Te THw
At EP PW
Hm+1_Hm+1 Hm+1_Hm+l
AS K, e AS K e (10)
NP PS

m+1 m+1 m+1 m+1
AS K, HT(S—HP_ASbe Hpé—Hs+ 4LAV.

TP PB
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where &, is the distance from node i to node j, m is denoted as time level, and At is the
time step. If g, is head dependent source/sink, then it can be linearized as:

Jp =—S,H{™ +S. (11)
where S andS. are the slope and the intercept of the linearization respectively.
Rearranging Eq(10) and substituting Eq(11) into Eq(10), gives

AHE™ + ACHI™T + AGHI™ + AGHT™ + AHT™ 4 A HT™ + AJH™ =5, 12)
Where
AS K AS, K
AE __ e MNe ’ AW - _ w'tw
Sep Sew
AS K AS.K
AN:_ sn n1AS:_ Ss S
Onp Ops
A __ASK A __ASK, (13)
O g
S, AV
Ao = ~(Ag + Ay + Ay + A+ A+ A +S,AV, =258
SAV, |
S, =S:AV, + Hp

Application of Eq.(12) to each cell in the flow domain results in a system of linear equations,
which would be a septem-diagonal matrix:

A A Ay A

H, Sr,

A A A ALA H, s,
KA RRAA Hy | s
Al AL AL AL AL AL A H, Sr,
Ae ASAL A A AA H, St
AR AL AL AL AL A He | _JSn

=1, (14)

Aé\lffﬂ ASNf3 AAI\IlffS AFl’\lf\?: AIIE\173 A'[l\|73 ATN73 H
AN-2 AN-2 Aﬂrxllfz AN-2 AN-2  pN-2 Hyo Sry .,
B s p £ N
AN-L AN AI\'\/‘_l AN-L AN Hy Sry,
B s p £
H
A A Ay Ay

N-3 SrN 3

Sry

Or
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[AJH}={sr} (15)

where [A] is a square symmetric positive definite matrix consisting of the coefficients

A A A A AL A and A, of Eq.(12), {H} consists of the unknown hydraulic head
values for current time step , and {Sr} is the forcing vector consisting of known values from
the previous time step and given fluxes.

The linear system of equations Eq.(14) is solved using matrix solver with given BCs. As
shown in Fig.10, there are 12 matrix solvers available in IGW including the Algebraic
Multigrid (AMG), the Successive Over the Relaxation (SOR), the Conjugate Gradient (CG),
the Conjugate Gradient with Normal Residual Equations, the Biconjugate Gradient (BCG),
the Full Orthogonalization, Biconjugate Gradient with Partial Pivoting, the Biconjugate
Gradient Stablized, the Transpose Free Quasi-Minimum Residual, Generalized Minimum
Residual, Flexible Generalized Minimum Residual and the Direct Quasi-Generalized
Minimum Residual.
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Figure 10. Matrix solver available in IGW
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2.2 Grid Layout Design in Parent-Child Models

As mentioned above, in the hierarchical modeling, information propagates in both down
and up scaling directions through interfaces of parent-child models. Information propagating
from parent model to child model is a process of how to pass coarse grid information to fine
grid. In the contrast, information propagating from child model to parent model is that of how
to pass fine grid information to coarse grid. Therefore, well-designed grid layout (including
temporal gridding) can make information to be propagated more accurately, efficiently and
reasonably. Interpolation schemes including both spatial and temporal are also grid layout
dependent.

Shared node based grid layout is one of the most efficient grid system in grid refinement
and nested modeling. Shared nodes are those nodes that shared by both parent and child
models such as node A, B, C and D in Fig.11. Nodes A’ and B’ are not shared nodes.
Connecting shared nodes on the child model boundary will form the interfaces of the parent
and child models such as line AB in Fig.11, that is, boundaries of child models are part of grid
lines of parent model or some of grid lines of parent model will be the boundaries of child
models. This kind of grid configuration can greatly simplify the interpolation efforts, which
will be used very intensively in down and up scaling iterative loop in the hierarchical
modeling and therefore can save computational time considerably.

[ | Parent Model Node
A Child Model Node

Figure 11 Shared node grid layout in a hierarchical modeling system
(Thicker solid lines are parent grid lines, thiner solid lines are child grid lines)
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Another grid layout called shared cell faces grid system is especially good for flux
calculation and interpolation. In this system, boundaries of child model will be part of the cell
faces of the parent model or some of the cell faces will be boundaries of the child models.
Fig.12 illustrates one of this kind of grid system. This kind of grid system, however, may
cause difficulty in nodal head calculation if a prescribed head boundary condition is needed
along the interfaces. In our multiscale modeling system, shared node based grid layout is used
and the following context related to grid system would be referred to as shared node grid
system.

[
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Figure 12 Shared Cell Face grid system

2.3 Boundary Condition Propagation in Parent and Child Models

Usually, child models contain finer mesh spacing and smaller time step than the parent
model. The function of the child model is to simulate phenomena that require a finer grid than
the parent model contains, such as sharp changes in hydraulic gradient, abrupt changes in
hydraulic properties that would otherwise be smeared by representation on the parent grid.
The role of down scaling from parent to child is to provide boundary conditions to the child
model that are consistent with the regional flow system; that of up scaling from child model to
parent model is to provide a feedback to the parent model that its aggregated feature is
consistent with the details resolved in child model. The coupling between the two grids occurs
via boundary conditions at the interface between the parent model and its child models.
Boundary conditions along the interfaces of parent-child models can be in the form of a
prescribed head (Type 1) or a prescribed flux (Type 2) as mentioned in Eq(3) and as shown in
Fig.13. Therefore, combinations of boundary conditions in the parent-child models could be

16



one of the following: 1) prescribed head in parent model and prescribed head in child model
(H-H), 2) prescribed head in parent model and prescribed flux in child model (H-F), 3)
prescribed flux in parent model and prescribed head in child model (F-H), 4) prescribed flux
in parent model and prescribed flux in child model (F-F). The following sections will describe
the approaches to obtain heads or fluxes boundary conditions in either parent model derived
from child model or child model derived from parent model.

O Parent Model node A Child Model node

< vaveavavs vy v

byoyoye}d

Figure 13 Boundary Conditions in Multiscale Modeling

2.4 Parent Specified Head Boundary Conditions

Head in our multiscale modeling system is referred to here as nodal head. Given heads in
child model and under a shared node based grid layout, head values at the parent model ‘s
grid nodes are very easily calculated.

As shown in Fig.14, head distribution along one segment of shared grid line in the parent
model, which is also part of the child model boundaries, is known once upscaling starts —
heads at triangle nodes in Fig.14 are known, denoted as Hc. As mentioned above, shared
nodes denoted as circles in Fig.14 are shared by both the parent and child models, which
means heads at shared nodes are either heads of the parent model denoted as Hp or those of

17



the child model, Hc. Therefore, as illustrated in Fig.11, head value at a parent model shared
node can be calculated by just simply assigning the child model head to the parent model head
at the same shared node, that is,

H, =H. (16)

Eq(16) will be applied to each shared node in the parent model, then a specified head
(Dirichlet) boundary condition for the parent model is resulted.

Headat A HD? Headat @

Hp=Hc
at share nodes

Figure 14 specified head boundary conditions calculated from child model
(Triangles are child model nodes, circles are parent model nodes and shared nodes)

2.5 Parent Specified FLux Boundary Conditions

Flux in our multiscale modeling system is referred to here as “flux across a surface”. To
derive the specified flux boundary condition along the parent-grid interface, flux balance on
interface is required: the net flow across the interfacing boundary from parent model side
equals that from child model side. Fig.15 shows a typical parent model cell represented by
darker shading and its three bordering child model cells represented by lighter shading with
index of i-1, i and i+1.

18
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Figure 15 Mass balance on the interfacing boundary of one cell face of parent model
and three bordering cells of a child model

From Fig.15, the net flow going into the parent cell is equal to the sum of the fluxes going
out of the child model cells: q,,, g; and q,,,, thatis,

Qp = _(qi—l +Q; + Qi+1) (17)

where q,, or q,, represents the flux across half cell face of the child model, g,

represents the flux across a full cell face of the child model.
Given the heads in the child model, from Fig.16, g, can be expressed in the following

form:

Qi =0q +0 + qy (18)
Or
H. —H H,-H H,-H
q ~—KB—E—NAY, K, B WAy, —K B —SAX_ (19)
2 EN 5NW 5NS

where He, Hn, Hw and Hs are nodal head at node E, N, W and S in the child models; Ke, Kw,
Ks are the cell face conductivities on cell face e, w, and s respectively; B is the thickness of
the cell, o; represents the distance between node i and node j and all other symbols were

denoted in Fig.16.
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Figure 16 Calculation of a full cell flux in the child model

In similar, from Fig.16, g, , and q,,,can be expressed in the following forms:

Hee —H He —H He —H
Oy ~—K B—EE—EAY, —K B—E_—NAY  —K_B—E _SEAX (20)
EEE 45EN 25ESE
H, —H Hy —H Hy —H
Gy~ —K, B W AY, — K, BW W AY K BW TS AY (21)
4 NW 5WWW 2é‘WSW

where Heg, Hww, Hsw and Hse are nodal head at node EE, WW, SW and SE ; Kee, Kwe, Kse
and Ksw are the cell face conductivities on cell face ee, we, se and sw respectively, all other
symbols were denoted in Fig.16.
Application of Eq(17) to each interfacing cell in parent model yields a specified flux
(Neuman) boundary condition for the parent model.

2.6 Child Specified Head Boundary Conditions

To define the specified head boundary conditions along the interface of child model, head
values need to be consistent with parent model, which means these head values would be
derived from parent model.

As shown in Fig.17, head distribution along one segment of shared grid line, which is either
part of child model boundaries or grid line of parent model, is known once downscaling starts
— heads at circle nodes (parent nodes) in Fig.17 are known, denoted as Hp. These shared nodes
are shared by both parent and child model, which means heads at shared nodes are either
heads of parent model or those of child model, Hc. Therefore, for the nodes that are shared as
with the parent, heads calculated by the parent model apply directly, that is,

He =Ho (22)
For the child nodes along the interface that do not share the same location with a parent
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node, values of head need to be interpolated using the values at shared nodes. If the child grid

. AX -
size is a factor of parent model (n= AXP ), for example, n=2 as shown in Fig.16, then head
Cc
values at non-shared nodes can be easily calculated in the following form by using linear
interpolation scheme:

H, =%|4i+1+(1—%)|4i (j=1n-1) (23)

where H; is the head at non-shared node between the ith shared node and the ( i+1)th

shared node, H,,, and H,; are heads at the ith shared node and the ( i+1)th shared node, at

which their values are known. For example, n=2 means there is only one non-shared node
between two shared nodes, from Eq(23) and as shown in Fig.16, its head value, H,,;,,, can

be given as

Hi+l+Hi

Hie = > (24)
Hi-1 Hi+1
He
i-1 i-1/2 i i+1/2i+l
Headat @© Headat A
Hc=Hp Hi+12=(Hi+Hi+1)/2
at share nodes at non-shared nodes
Hi
He Ah NN
i-1/2 i+1/2

Figure 17 specified head boundary conditions calculated from parent model
(triangles are child model nodes, circles are parent model nodes and shared nodes)

Similarly, if a quadratic interpolation method is favorite, three shared nodes, H,,,, H;

and H,, should be used to calculate all the non-shared nodes within node (i-1) to (i+1). If

P

, then the quadratic interpolation scheme can be written as
C

Hj=§%kr«xr¢mHH—zuramedu—mHml (j=12n-1) (25)
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If the conductivity is spatially variable over the computational domain, a Darcy weighted
interpolation scheme my be used as first suggested by Wasserman and later developed by
Mehl and Hill.

Application of Eq(22) and Eq(23) or Eq(25) to each non-shared node in the child model

yields a specified head (Dirichlet) boundary condition for the child model.

2.7 Child Specified Flux Boundary Conditions

As noted previously and seen clearly from the parent model flux boundary calculation,
defining parent model specified flux boundary condition is a process of summing up fluxes
from the child model cells. In the contrast and as to be seen later on, defining child model
specified flux boundary condition will be a process of allocating fluxes from parent model
cells to child model cells.

Given the heads in the parent model, from Fig.18, flux across the parent grid face AB can
be expressed in the following form:

Q. z—KnBMAXP (26)

NS

where &, Isthe distance between node N and Node S in the parent model.

In order to maintain a mass balance on the grid face AB, Q, should be distributed among
those child model cell faces that shared with AB, for example, ab, bc and cd in Fig.18. The
simplest way to allocate Qp to the fluxes across child cell faces is to distribute it in an area
weighted way, which can be written as

6 = 2—Qu (i=1N,) @7
2A
j=1
where A, is the area of the ith cell face that shared with parent grid face AB, q; is the flux
across the ith cell face with area of A, and N is the total number of cell faces that shared

with parent grid face AB . From Eq(27), as an example in Fig.18, fluxes q.,, q; and q,,
can be obtained in the following forms

qi+l = & (28)

Application of Eq(27) to each shared cell face in the child model yields a specified flux
(Neuman) boundary condition for the child model.
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Figure 18 Calculation of a cell flux for child model

2.8 Transient Boundary Conditions

As mentioned previously, in a nested time stepping algorithm, temporal interpolation
will be needed to obtain heads at the nested time step of child models. Temporal interpolation
is not only applied to heads along the interfaces of parent-child models, but also over the
whole computational domain of a child model since the initial conditions for nested time steps
is provided by parent model in which time step is larger than its child model’s nested time
step. If a “shared time nodes” scheme is used in designing the nested time step system in a
multiscale modeling and a nested time step of the child is a factor of parent model’s time step

A - .
(n= A—tp), for example, n=2 as shown in Fig.19, then head values at shared time nodes and
C
non-shared nodes would be easily calculated in the similar way as done for shared nodes

based spatial grid layout.
It should be noted that all temporal interpolations will be carried on individual model and
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the interpolated information, either from parent model or child model, then are propagated
between parent and child models via the boundary conditions as mentioned above and initial
conditions.

Model Level

M° M’ M2
Time Le\fé © 4

Atp< N e i,

\ 9! -

2
| J l 3 | J

Figure 19 Nested time stepping “shared time nodes” (nodes on solid lines) and
“non-shared time nodes” (nodes on dash lines) with At, = 2At., = 4At., =8At,,

(1) Initial Conditions
Initial conditions for every time step in a child model will be heads at previous time
step in the same model. Initial conditions for a time step in a parent model will be heads at
previous time step in the same model either obtained directly by solving PDE if the previous
time level is a non-shared time node or updated from its child models by mean of upscaling
procedure if this previous time level is at a ‘shared time node’.
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Figure 20 Nested time stepping: parent time nodes and child time nodes

Shown in Fig.20 is a parent-child temporal grid system in which circles denote parent
time grid nodes and triangles denote child time grid nodes. Once head values at the triangles
are calculated, values of head at the circles are obtained by directly assigning values of head
at the triangles to head values at the circles or spatially averaging those heads at the triangles
that are parent node’s neighboring nodes as shown in Fig.21.

H,(t+At,) =H. (t+nAt.)
or (29)

Hp(t+AtP):%ZHic(t+nAtc)

where Hp is the head at the pth node in the parent model at time level t+ At,, Hi is the same

time level head at the ith node in the child model that is the neighboring node of node P, Nb is
the total number of neighboring nodes around node P.
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Figure 21 Head Averaging at P over Neighboring Child Cells

(2) Boundary conditions updating along “shared time nodes” path lines
In this case, both the parent and child models are at the same time level and it is not
necessary to do any temporal interpolation. Spatial interpolation will be required when to
define updated boundary conditions from either parent model or child model. This has been
described in the previous sections already.

26



(3) Boundary conditions updating at the “non-shared time nodes”

As seen in Fig.6 and Fig.19, dash lines actually are the extension of those solid lines with
missing ‘current’ information from their parent. Function of dash lines is to provide missing
current information from parent model at the broken (non-shared) nested time step of a child
model so that calculation in child models can be able to advance to the next nested time step.
For example, let’s assume that time step in a parent model is At, and At. istime step in a
child model. The calculation starts from time level t and advances to time level t+At,. If
there are 3 nested time steps in one At,, which means At, =3 At., the nesting structure can

be seen in Fig.20.
It is seen clearly that to advances to time level t+At, from time level t in the child

model needs go through time levelt ,t+ At., t+2At and t+3At, whileonly t ,t+At, in
parent model. Transient equation solving in child model will be stopped at time level t + At
t+2At, due to the fact that boundary conditions are missing. To circumvent this, head
values along the interface of parent and child models would be interpolated temporally at time

At 2At .
level HTP (equals to t+At.) and t+ 3P (equals to t+2At,) from heads at time

level t and t+At, in parent model. If a linear interpolation method is used, then head
values at time level t+At, and t+2At. in child model can be expressed as

HCG+A%)=§HPM+%HPG+A%)

(30)

HC(t+2AtC):%Hp(t)+§HP(t+AtP)

Generally, if number of nested time steps of a child model is n, then their boundary
conditions can be derived from the parent model in the following form

Hc(t+iAtC)=nT_in(t)+%HP(t+AtP) (31)

(i=1 n-1)

Fig.22 shows the temporal interpolation graphically.
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Fig.22 Temporal interpolation for time level t+dt/2 in parent model (red arrows) and
updating boundary conditions for child model (white arrows)

2.9 Notes in Boundary Conditions
Because the coupling occurs through boundary conditions, which are accounted for in
the right hand side of the matrix equations, both the parent and child models maintain
a conventional stencil. Thus, the commonly available linear equation solvers
developed for these regular stencils can be applied without any special consideration.

Relaxation Factor needed in coupling iteration loop

Flux boundary condition in both child and parent models + prescribed flux inside only
may cause an unreasonable solution due to the fact that mass conservative law may be
invalidated

Corner cell flux Calculation --- vertical face or horizontal face?
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3 Interaction of surface water and groundwater

The mathematical model of interaction of surface and groundwater water is described by a
system of two partial differential equations. These two governing equations must be solved in
a coupling way due to the fact that the system simulated involves interaction terms between

surface water and groundwater. It is noted that surface water body is referred to here as lakes,
wetlands and reservoirs only.

(1) Groundwater governing equation
Groundwater flow is governed by Eq.(1), that is

oH ev
S, ot :V(K.VHGW)_qGW+qSW
- SW owny L
qSW=Z(Hi —-H; )EI (32)

oW _ HEY if HEY > Elev,
' Elev, if H®" < Elev,

Where H®" is the groundwater head, [L] HE" is the groundwater head in the ith cell
that having interaction with surface water, [L], L, and B, are the leakancy and thickness of
the interactive cell, [1/L] and [L], respectively, H*" is the surface water head corresponding
to its counterpart of groundwater head, HS", [L], Elev, is the bed elevation of surface

water body (could be spatially variable), [L], q°" is the groundwater source/sink terms,
[L3L3/T], qg, is the incoming or outgoing discharge from surface water body, [L3L3/T], N
is the total number of surface water cells.

(2) Surface water governing equation
Lake water level H®" is governed by the following continuity equation:

oV
8iw = st _QGW
a\éiw s M ow B

N (33)
Qow = Z(Hisw - HiGW)LiAi

oW _ HEY if H®" > Elev,
' Elev, if H®" < Elev,

Where Vg, is the storage volume of the water body, [L?], S, is the water surface area,
[L?], A, is the area of the ith interactive cell, [L], Q,, is the incoming discharges, which
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could be function of time and of water elevation, [L3/T], Q., is the incoming or outgoing
discharges from groundwater, [L*/T]. Assuming S, is time independent (no deposit or
scouring), then gives

oH Y
st T - st _QGW
Qaw = 2 (H* —HL A (34)

oW _ HEY if HEY > Elev,
' Elev, if HE" < Elev,

Due to the fact that S;,, may be a function of water elevation, eq(34) has to be solved by
using non-linear methods, such as Newton Raphson method.

Interaction of surface water and groundwater will be implemented through constantly
updating the coupling term: qg, in Eq(32) and Qg, in EQq(34) in a non-linear way.
Numerical schemes to approximate Eq(32) has been described in the previous sections. As to
Eq(34), there are several schemes available and will be described below.

(3) Numerical Scheme to Approximate Surface Water Equation
1) Explicit Scheme

Applying backward finite difference scheme to the time derivative and explicit scheme to
the coupling terms in RHS of Eq.(34), gives

HO™™ H ™ o Sh g swm _ pyow
Ssw A = éW)—Z(Hi @ —HO)LA (39)
Or
st(”+1) _st(”) At (n+1) - H SW) _ 4 ewmy L 36
- +S_ SW _Z( i - )|A| ( )
SW i

where n and n+1 denote previous and current time level respectively, At is the time step.

2) Semi-implicit Scheme:
Assuming that L is constant over the lake area, which is equal to L, from Eq(34), gives

oH*>" Sy S A LS oW
Sow —— = Qo ~H™ LY A+ D HMAL (37)
Or

oH " sw N Gw
SSWT+H LSSW :QSW+ZHi AiLi (38)
Hence,

SwW N
H™T s~ Qow +>HAL A (39)

at SwW i I I SW
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Usually, H"is function of H*®". Applying time level n+1to H*®*" (implicit) and time

levelnto H®" (explicit), gives the semi-implicit scheme of Eq(39):

n+ n (n+1)
H SW(n+) _ p sW(n) 4L SWos) _ i H iGW(n) L, i + Qi (40)
At i Ssw  Ssw
Or
W (n+1 1 W . w A\ WY
HEWOD = = WO ALY HEYO L 4 A2 (41)
1+ LAt i Saw sw

Combining both Eq(36) and Eq(41), gives

N (n+1)
powen L (HSW(”) + A HEOL SA* + A= — At(a —1)LH SW(”] (42)

1+ ol At

SW SW

where if a=0 and L is constant over the surface body, Eq(42) will become Eq(36) and if a=1,
then Eq(42) will become Eq(41).
Eq(32) or Eq(42) will be applied when Sw is constant. More general case, for explicit

scheme, we have

dv
diw = st - QGW =Qs
N
Qow = Z(Hisw - HiGW)LiAi (43)
oW _ HEY if HEY > Elev,
' Elev, if H®" < Elev,
And for semi-implicit scheme, we have
aVSW SW SW
ot = Qs —(Qlgy, H™" +Q24,) =Qs-Q1H
Where
N
Qlgy, = z Li A (44)

N

QZGW = _Z HiGW I—iAi

oW _ HEY if H®" > Elev,
Elev, if H®" < Elev,
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Or

Vgy =V, +AtQs — AtQl,, H " (45)
F(H®) =V, +AtQLl,, H® —(V, + AtQs) =0 (46)
This gives

dF dv AtQ1,,, H®"
dH 3" - dHSSV‘\’/" d|f|V\gW =A™+ AtQlg,, (47)

Therefore, the Newton-Raphson formula for solving H®" can be written as

HSW —H S|\é|v . F(H;\g’ -H sl\év _sz (Hosl\gl) + AthGW Hosl\iiv — (Vo + AtQS)
T A L AQL,, ? A + AtQL,,

(48)

For explicit scheme Qlew=0.0 and Qew Will be calculated by using water level at old time
step; for semi-implicit scheme, Qow Will be separated into two terms: Qlew and Q2cw
where Qew= HVQ1ew+ Q26w and HSW is water level at current time step.

3) Nonlinear Coupling Scheme

In this scheme, H®" and H*®"will be solved separately and a differ correction (DC)
technique will be applied to couple these two heads in such a way that the coupling terms in
both surface water and groundwater equations tend to be identical. During each time step:

(@) Given H®®™ and HEY attime level n, solving Eq(48) yields H V™%

(b) Once H ™ is known, solving Eq.(32) gives the new H &%

(c) If ‘neWHiGW —oIdHiGW‘ <& then go to next time step; or HEY=New H?Z", repeats

(a) through (c)

This iterative loop is shown in Fig.23.
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HS"Wand HE at time level n

> Solving Eq(42) to obatain H5W at time level n+1

A J

Solving Eq(32) to obatain new HEW

Next time step

Figure 23 SW/GW coupling iterative loop

In order to incorporate the interaction of surface water and groundwater into hierarchical
modeling system, the coupling iterative process will be added in the model solver, which will
be illustrated in Fig.24.

From Fig.24, the coupling iterative loop will be embedded in each down and up scaling
model solver and this will keep the whole hierarchical framework unchanged.
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Figure 24 SW/GW coupling iterative loop embedded in model solver

34



(4) Scheme Comparison
The following simple test case illustrates the interaction of two lakes and one pumping
well system (Fig.25). Q, in lake 1 and lake 2 are 500 m*/day and 0 m3/day respectively

and the pumping rate at the well is -500 m®/day. Coupling scheme and explicit scheme are
used to do the comparison with different time steps.

BIF - - - - - e o

..............

33I]::

190(m)

Figure 25 Interaction of two lakes and one pumping well system

Fig.26 to Fig.28 are showing the results of the time-varying lake water level obtained
from these two scheme by using time step of 1 day, 3 days and 5 days. It is seen that coupling
scheme predicts the same results as the explicit scheme does using small time step. Large time
step will cause oscillation in explicit scheme while give the same results in coupling scheme.

Comparison of lake levels from explicit scheme using different time steps is shown in
Fig.29. That from coupling scheme is shown in Fig.30. Again, it is clear that coupling scheme
is more reliable than other schemes, especially large time step is involved.

S Levellm)
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& 10 20 30 40
Time Elapsed

0.0

Figure 26 Coupling Scheme (solid lines) VS Explicit Scheme(circle) at At=1 days
(Blue color represents water level in Lake 1, red color represents water level in Lake 2)
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Figure 27 Coupling (solid lines) VS Explicit (solid line with circle) Scheme at At=3 days
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Figure 28 Coupling (solid lines) VS Explicit (solid line with circle) Scheme at At=5 days
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Figure 29 Explicit Scheme: At=3 days(solid lines) and At=5 days(solid line with circle)
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Figure 30 Coupling Scheme: At=3 days(solid lines) and At=5 days(solid line with circle)

4 Tteration Levels within the Algorithm

There are five nestled iterative procedures executed during each time step in a multiscale
modeling system. Innermost among these is the matrix solver to solve the system of equations
subject to the FVM scheme; the second nested one is for the head dependent source/sink
terms; nonlinear unconfined head determination forms the intermediate iteration level; the
coupling iteration of surface water and groundwater is embedded as the fourth iteration level
and down and upscaling loop is the most outer iteration level of the system. The overall
iteration loop structure in a multiscale modeling system is shown in Fig.21.

Initial Condition / Previous Time Level I

d Matrix Solver

‘ Head Dependent Source/Sink

v

‘ Unconfined Head

v

— ‘ Surface Water/Groundwater Interaction

v

‘ Down and Up Scaling

¥

Next Time Step Unit

Figure 22 Overall Iterative Loop Structure in a Multiscale Modeling
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5 Verification and Examples

Discription:
Parameter:
Results:
Remarks:

Hierarchical Model

Head at well location V5 Number o id
(level of submodels)

Simple Case by using HM

More readings please go to:
HydroProcess_fens_offprint.pdf

SisterLakesPaper_Vol20 Issue 11_2015.pdf
Zhephy.pdf
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