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Paramter Estimation In IGW 
By Huasheng Liao 

 

The Goal: 

The goal is to find the parameters, a


 ( a


is a vector) in a given model or multiple models 

such that the given models’ values f( x


, a


) fit best some data points 

 

To achieve the goal: 

Given a model with unknown parameters, a


=(a1,a2) to be estimsted: 

Model: 
xa

xa
aa

+
=

2

1
21 ),(  = f( x


, a


) (or complex numerical models) 

And observations: i at xi, i=1,2,,m 

 

i 1 2 3 4 5 6 7 

x 0.038 0.194 0.425 0.626 1.253 2.500 3.740 

 0.050 0.127 0.094 0.2122 0.2729 0.2665 0.3317 

 

One can have m residual functions: 

),,(),( 2121 iii xaaaar  −= ,  i=1,2,,m 

Note that, ),( 21 aari  is function of unknown parameters, a


=(a1,a2) to be estimsted. 

Best fitting means that those residuals at data points tend to minimum or zero: Least Square 

Minimization (LSM) or Weighted Least Squares Minimization (WLSM) is one of the 

good method to be used in parameters estimation. 

 

LSM : the unknown values of the parameters in the models are estimated by finding the 

numerical values for the parameter estimates that minimize the sum of the squared 

deviations between the observed responses and the functional portion of the model. 

 

Sum of squares residuals: ),(),( 21

1

21

2
aaSaarS

m

i

i
=

==  

What does S look like? 
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Gaussian Model as Objective Function with 10 data points
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Gaussian model 
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Power Model 
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Local traps 

Multiple minima 

Multiple minima can occur in a variety of circumstances some of which are: 

• A parameter is raised to a power of two or more. For example, when fitting data to a 

Lorentzian curve  

2)(1

),(

a

xi
axf i −

+

=



 

where α is the height, γ is the position and a is the half-width at half height, there are two 

solutions for the half-width, and which give the same optimal value for the objective 

function. 

• Two parameters can be interchanged without changing the value of the model. A 

simple example is when the model contains the product of two parameters, since αβ 

will give the same value as βα.  

• A parameter is in a trigonometric function, such as sina , which has identical values at 

a’+2n. See Levenberg-Marquardt algorithm for an example.  

http://en.wikipedia.org/wiki/Lorentzian
http://en.wikipedia.org/wiki/Levenberg-Marquardt_algorithm#example
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Not all multiple minima have equal values of the objective function. False minima, also 

known as local minima, occur when the objective function value is greater than its value at 

the so-called global minimum. For example, the model 

ii xaaaxf )31(),( 3+−=  

has a local minimum at a= 1 and a global minimum at a= -3 

To be certain that the minimum found is the global minimum, the refinement should be 

started with widely differing initial values of the parameters. When the same minimum is 

found regardless of starting point, it is likely to be the global minimum. 

When multiple minima exist there is an important consequence: the objective function will 

have a maximum value somewhere between two minima. The normal equations matrix is not 

positive definite at a maximum in the objective function, as the gradient is zero and no unique 

direction of descent exists. Refinement from a point (a set of parameter values) close to a 

maximum will be ill-conditioned and should be avoided as a starting point. For example, 

when fitting a Lorentzian the normal equations matrix is not positive definite when the 

half-width of the band is zero.[7] 

 

 

The goal turn out that we have solve a problem of finding a minimum of a function S: 
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this is a nonlinear optimization problem and data-dependent 

http://en.wikipedia.org/wiki/Non-linear_least_squares#cite_note-6#cite_note-6
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Method used in IGW 

The Gauss–Newton algorithm is a method used to solve non-linear least squares problems. 

Unlike Newton's method has the advantage that second derivatives, which can be challenging 

to compute, are not required. 

======================================= 

General Newton Method: Newton method , also know as the Newton-Raphson method, is 

perhaps the best know mehod for finding successively better approximations to the zeros (or 

roots) of a real-valued function. Newton’s method can often converge remarkably quickly, 

especially if the iteration begins “sufficiently near “ the desired root. 

The idea of the method is as follows: one starts with an initail guess which is reasonably 

close to the true root, then the function is approximated by its tangent line, which can be 

computed using the tools of calculus, and one computes the x-intercept of this tangent line, 

which is easily done with elementary algebra. This x-intercept will typically be a better 

approximation to the function’s root than the original guess, and the method can be iterated. 

   

 An illustration of one iteration of Newton's method (the function f is 

shown in blue and the tangent line is in red). We see that xn + 1 is a better 

approximation than xn for the root x of the function f. 

  

Given a nonlinear function f(x) defined on the interval [a,b], is tangent line at point x0 can be 

written as 

)(')()( 00 xxfxfxf linear +=                            (1) 

http://en.wikipedia.org/wiki/Non-linear_least_squares
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Eq(1) can also be derived using Taylor seriers expansion by neglecting the second derivative 

terms and higher orders terms. 

Finding the x-intercept of Eq(1) becomes to solve the following linear equation 

0)(')()( 00 =+= xxfxfxf linear
                          (2) 

This gives 

)('

)(

0

0

01
xf

xf
xx −=                                         (3) 

Then we can derive the formula for a better approximation, x2 , by referring to the diagram 

above: 

)('

)(

1

1

12
xf

xf
xx −=                                        (4) 

The final iterative formula can be written as 

)()('
)('

)( 1

1 kkk

k

k

kk xfxfx
xf

xf
xx

−

+ −=−=                                      (5) 

Newton Method for Optimization 

The necessary condition for the function 
=

=
m

i

i aarS
1

21

2 ),( to have an extremum is that the 

partial derivatives vanish i.e.  

 

),,2,1(  0
1

nj
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r
r

m

i j
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i ==




=

                         (6) 

 

or, equivalently,  

0)()( =araJ
T 

                                    (1) 

Where 
j

i

ij
a

r
J




=  is Jacobian matrix of residual vector ),,,( 21 mrrrr 


= . 
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Equation (1) is usually a system of non-linear equations that numerically, can be solved by 

Netown-Rasphson’s method. ➔ how ? 

Denoting nonlinear system eq(6) as 

),,2,1(  0)( njaF
a

S
j

j




===



 

Where Fj is nonlinear funcion of vector a


. Referring to eq(5),   

),,2,1(    )( )()( 2

1

njaOa
a

F
aFaaF

n

i i

j

jj 


=+



+=+ 

=

 

The matrix of partial derivatives appearing in above equation is the Jacobian matrix J: 

j

i
ij

a

F
J




=  

In matrix notation,  

)())((()()( 2)()1()()()1(
aOaaaJaFaF

kkk

F

kk 
+−+= ++  

By neglecting terms of order )( 2
aO


  and higher and by setting 0)( )1( =+k
aF


, one obtains 

the similar iterative formula (Rather than actually computing the inverse of this matrix, one 

can save time by solving the system of linear equations) 

)())((( )()()1()( kkkk

F aFaaaJ


−=−+  

Recalling that 
j

j
a

S
aF




=)(


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,



, from above 

equation, gives  

SaaH
kk −=−+ )( )()1( 

 

Where Sg =


 is gradient, H  is Hessian matrix of S, or 
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gHaa
kk 1)()1( −+ −=


   

This is the recurrence relation for Newton's method for minimizing a function S of 

parameters, where g denotes the gradient vector of S and H denotes the Hessian matrix of S.  

As can be seen , Newton's method needs to calculate the Hessian, which is always an 

expensive operation, so it is very hard to apply to those cases with difficulties in the second 

derivatives calculations.  For these cases an approximation for Hessian is used instead, 

which leads to various modified Newton methods such as Gauss-Newton, quasi-Newton and 

others. 

Note 1:   

Newton's method is different from Gradient descent method: gaa
kkk )()()1( −=+ 

, which is 

based on the observation that if the real-valued function S( )(k
a


) is defined and differentiable 

in a neighborhood of point )(k
a


 , then S decreases fastest if one goes from )(k
a


 in the 

direction of the negative gradient of S at )(k
a


, that is, 


 −+ )()()( )1()()1( kkk
aSaSaS , 

where )(k  >0, a small enough number.  

 

A comparison of gradient descent (green) and Newton’s mehod(red) for minimizing a 

function (with small step sizes). Newton’s method uses curvature information to take a more 

direct route. 
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Note 2:   

Zero derivative 

 

same derivative at different point 
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Gauss–Newton algorithm : Derivation course I 

Since 
=

=
m

i

i aarS
1

21

2 ),( , the gradient is given by 


= 


=

m

i j

i

ij
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r
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1

2  

Elements of the Hessian are calculated by differentiating the gradient elements, gj, with 

respect to a


: 


= 


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






=
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r
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1

2

)(2  

The Gauss–Newton method is obtained by ignoring the second-order derivative terms (the 

second term in this expression). That is, the Hessian is approximated by 


==

=









m

i

ikij

m

i k

i
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i

jk JJ
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r

a

r
H

11

22  

The gradient and the approximate Hessian can be written in matrix notation as 

JJH

rJg

T

T

2

2



=


    == at least Jij need to be evaluated ➔ sensitivities Mtx 

These expressions are substituted into the recurrence relation above (Eq(2) to obtain the 

operational equations, the resulting linear system with unknown vector, )(k
a


  

)()()()( )()()()()( kkkkkT
araJaaJaJ


−=  

Once unknown vector, )(k
a


  has been solved, the following 
)()()1( kkk

aaa


−=+   

 

is taken as the new approximation of the optimum. The relaxation factor  is a parameter of 

the method. 
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Gauss–Newton algorithm : Derivation cousre II 

Consider a set of m data points, (x1,y1),(x2,y2), …, (xm,ym), and a model function (a curve) 

y=f(x,a), that in addition to the variable x also dependes on n parameters, a=(a1,a2,…,an), 

with m>=n. It is desired to find the vector a of parameters such that the model (curve) fits 

best the given data in the least squares sense, that is, the sum of squares 


=

=
m

i

i aarS
1

21

2 ),(  

Is minimized, where the residuals (errors) ri are given by 

),(),( 21 iii xafyaar −= ,  i=1,2,,m 

The minimum valuesof S occurs when the gradient is zero. Since the model contains n 

parameters there are n gradient equations: 

),,2,1(  02
1

nj
a

r
r

a

S m

i j

i

i

j

==



=





=

 

In a non-linear system, the derivatives
j

i

a

r




 are functions of both the independent variable 

and the parameters, so these gradient equations do not have a closed solution. Instead, initial 

values must be chosen for the parameters. Then, the parameters are refined interatively, that 

is, the values are obtained by successive approximation, 

j

k

j

k

jj aaaa += +1  

Here, k is an iteration number and the vector of increments, a  is known as the shift vector. 

At each iteration the model is linearized by approximation to a first-order Taylor series 

expansion about k

ja  


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Or approximately 
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j
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j
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k

ii aJaxfaxf  + ),(),(  

The jacobian, J is a function of constants, the independent variables and the parameters, so it 

changes from iteration to the next. Thus, in term of the linearized model, ij

j

i J
a

r
=




 and 

the residuals are given by 

aJaxfyxafyr
n

j

ij

k

iiiii  −−=−= ),(),(  

Substituting these expressions into the gradient equations, they become 

),,2,1(  0]),([22
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Or  

 

),,2,1(  0]),([2
1

njaJaxfyJ
n
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ij ==−−− 
=

 

 Which, on rearrangement, become n simultaneous linear equations, the normal equations 

 

),,2,1(  ),([
11

njaxfyJaJJ
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The normal equations are written in matrix notation as 

)()()()( )()()()()( kkTkkkT
araJaaJaJ


=  

When the observations are not equally reliable, a weighted sum of squares may be 

minimized, 


=

=
m

i

iii aarWS
1

21

2 ),(  

Each element of the diagonal weight matrix, W should , ideally, be equal to the reciprocal of 

the variance of the measurement. This implies that the observations are uncorrelated. If the 

observations are correlated, the expression 


=

=
m

i

m

j

jiji rWrS
1

 

Applies. In this case the weight matrix should ideally be equal to the inverse if the 

variance-covariance matrix of the observations. The normal equations are then 
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)()()()( )()()()()( kkTkkkT
arWaJaaWJaJ


=  

 

These equations form the basis for the Gauss-Newton algorithm for a non-linear least squares 

problem. 

 

Example 

Model: 
xa

xa
aa

+
=

2

1
21 ),(   

And observations: 

 

i 1 2 3 4 5 6 7 

x 0.038 0.194 0.425 0.626 1.253 2.500 3.740 

 0.050 0.127 0.094 0.2122 0.2729 0.2665 0.3317 
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Objective Function within 0<a1<1.05 and 0<a2<1.05 
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Iter. No.4-6
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Optimal Values : 0.362 and 0.557
Num Iterations : 6

Model: Y=aX/(b+x)
Data:

i X Y
1 0.038 0.050
2 0.194 0.127
3 0.425 0.094
4 0.626 0.2122
5 1.253 0.2729
6 2.500 0.2665
7 3.740 0.3317

Frame 001  25 Aug 2008  ObjFunction

 

Convergent Paths starting with initial guesses a1=0.9 and a2=2.0 

Optimal paramters are a1=0.362 and a2=0.557 

 

 

http://en.wikipedia.org/wiki/Image:Gauss_Newton_illustration.png
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1 Automatic Variogram Fitting 

 

Button “BestFit” 
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Parameters Estimation window 

 

2 Parameter Estimation by using IGW  

(1) Seleting parameter zones: Check those polygon-based parameters to be estimated when 

create your conceptual model (only conductivity and recharge are available right now) 
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(2) Select Solver: hit  lead to 

 

New tab in “Solver” toobar: Parameter Estimation 

 

(3) Check “parameter estimation” check box 
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In the new tab: Newton method option, constrains, method to calculate senstivity matrix, … 

 

(4) Observation input 
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Observation input: file/ manually input/copy-paste 

 

(5) Results --- parameter estimation results window 
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Table: Parameters estimated/residuals 

Charts: 

Iteration history 

Observations VS model values 

Initial guesses VS Optimal values 

 

Demonstration: 

1 GIS data variogram model 

2 5 K parameters estimated by using IGW flow model 

3 5 K + 1 recharge parameters estimated by using IGW flow model 


