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Abstract: In this paper, a generalized hierarchical multiscale approach for modeling coupled groundwater and surface water systems is
demonstrated. Groundwater–lake interactions are simulated by coupling the groundwater equations with the lake’s continuity equation and by
providing a two-way iterative feedback between models at multiple scales using specified head/flux boundary conditions. A hierarchical
parameter estimation method that allows data and parameters at different scales to communicate between each other is also developed. These
methods are applied to simulate a lake augmentation system for the Sister Lakes in southwest Michigan, which involves pumping a large
amount of water from an irrigation well into the lakes. This problem requires resolution of time scales ranging from site-scale (hours) to local-
scale (months) to watershed-scale (years) and spatial scales ranging from a few meters to a few kilometers. A hierarchical modeling frame-
work consisting of five interlinked models was created, and model calibration was performed using drawdown data from a 72-h pumping test.
The calibrated model was then used to simulate the entire lake augmentation system. The results indicate that the proposed modeling and
parameter estimation approach can help improve the ability to model real-world complexities. DOI: 10.1061/(ASCE)HE.1943-5584
.0001219. © 2015 American Society of Civil Engineers.
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Introduction

The so-called myth of groundwater budgets was addressed by
Bredehoeft et al. (1982). They claimed that the magnitude of sus-
tainable development (groundwater pumping) was not dependent
on the amount of recharge that can be captured, but rather on
the rate at which discharge from the system can be captured. From
this perspective, consider the case of a groundwater pumping well
near a lake system, i.e., a series of lakes. The critical question to ask
in such a scenario is from where the water comes. During the initial
period of pumping, water comes from aquifer storage. As time pro-
ceeds and the drawdown cone expands, lake stages fluctuate as
water circulates from lake to lake in response to the new stress
in the watershed. In particular, the lakes in close proximity lose
water to the pumping well, but also establish lower hydraulic head
to induce flow from lakes further from the pumping center. The
challenge in describing this flow system lies in the different spa-
tiotemporal scales at which that the movement of water occurs.

For the extreme climate scenario of zero recharge to the system,
the lakes will go dry if pumping continues for a sufficient time.

This does not happen in reality because recharge in Michigan is
high and can offset the dropping lake levels. Circulation of flow
between lakes does take place, but this phenomenon is hard to ob-
serve because of the following: (1) very small change in lake levels,
(2) very long time-scale of the circulation, and (3) complex inter-
play between multiple sources and sinks (such as rainfall, evapo-
transpiration, base flow, and so on). However, it is possible to
notice this effect on lakes using numerical simulations, where all
other sources and sinks can be removed and only the effect of in-
duced pumping can be observed.

Even by reducing the complexity of the model by removing
real-world sources/sink, the flow system of a stressed ground-
water–lake system is difficult to numerically model. This is due
to the interplay of multiple spatial and temporal scales. At the
watershed scale, there is a regional flow system with variability
occurring across kilometers and years, whereas the site-scale dy-
namics near the pumping well exhibit variability of the order of
meters and hours. Modeling a system with such disparity between
scales is challenging in two aspects. as follows: (1) forward mod-
eling, creating a multiscale modeling framework that can incorpo-
rate all the spatial and temporal scales and capture the significant
dynamics of the system; and (2) inverse modeling, i.e., estimating
parameters for a multiscale model that has data and parameters at
multiple scales. Parameter estimation poses several questions, such
as how to distinguish between the different scales of data or how to
assimilate the various scales of data and parameters into one com-
prehensive framework. Addressing these challenges is the objective
of this paper. A literature review of multiscale modeling and param-
eter estimation is presented next, which provides the basis for the
adopted approach.

Multiscale Modeling

Multiscale modeling is appropriate whenever there is a need to
understand both regional and local processes. Several approaches
have been used for this purpose, including local analytical correction,
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global grid refinement, and local numerical correction (or nested
grid modeling). The hierarchical patch dynamics paradigm (HPDP)
was used within the Interactive Groundwater modeling environ-
ment (Li and Liu 2006a, b, 2008; Li et al. 2006) to simulate a com-
plex groundwater remediation system (H. Liao et al., “Hierarchical
modeling of a groundwater remediation capture system,” Working
Paper, Michigan State University, East Lansing, Michigan). This
field application of HPDP revealed leaking contaminants through
forward and reverse particle tracking. The algorithms for upscaling
and downscaling between models at different spatial scales were
provided as well as the discretization, numerical scheme, and grid
layout in the various model levels. In the research reported in this
paper, the algorithm development is extended for transient prob-
lems involving subtiming for flow and transport. Mathematical
models for surface and groundwater interactions are also incorpo-
rated into HPDP. First, a review of nested grid model applications is
provided.

Nested Grid Modeling

Over the last 40 years, many nested grid models have been applied
in groundwater studies. Mrosovsky and Ridings (1974) used a
three-dimensional (3D) orthogonal petroleum reservoir model with
a well situated in one vertical column, which was discretized using
a radial grid. The orthogonal grid provided flux boundary condi-
tions (BCs) for the radial grid. Graham and Smart (1980) used a
fine-grid model nested in a coarse-grid model for simulating a res-
ervoir in communication with a large pressure-supporting aquifer.
Townley andWilson (1980) developed a finite element aquifer flow
model, AQUIFEM-1, that used boundary conditions (both pre-
scribed flux and prescribed head) for small-scale models from
large-scale models. Heinemann et al. (1983) applied dynamic local
grid refinement for a multiple application reservoir simulator. Ward
et al. (1987) used telescopic mesh refinement (TMR) to create a
series of nested models at regional, local, and site scales to model
the contaminant transport at the Chem–Dyne hazardous waste site.
However, coupling between the different scales was only one-way,
i.e., from the large mesh to the small mesh. Fung et al. (1992) used
a control-volume FEM using linear triangular elements to simulate
thermal multiphase flow in porous media; so-called near-well res-
olution was achieved by local grid refinement. Leake et al. (1998)
proposed different methods for assigning boundary conditions in
small-scale groundwater models from large-scale, block-centered,
finite-difference models such as MODFLOW (McDonald and
Harbaugh 1988). Efendiev et al. (2000) presented coarse-scale
numerical models of flow in heterogeneous porous media that in-
corporated subgrid effects. This method first upscales the determin-
istic fine-grid permeability description and then solves the pressure
equation over a coarse grid to get coarse-scale velocities. Mehl and
Hill (2002) use a so-called shared-node technique between the
parent and child models to develop a new method of local grid re-
finement for two-dimensional (2D) block-centered finite-difference
meshes. They used both interpolated heads and fluxes as boundary
conditions at the interface between parent and child models,
therefore creating an iteratively coupled feedback mechanism.
de Tullio et al. (2007) solved the 3D preconditioned Navier–Stokes
equation for compressible flows with an immersed boundary ap-
proach by using a flexible local grid refinement technique to
achieve high resolution near the immersed body and in other
high-flow-gradient regions.

Subtiming for Flow and Transport

Although all the techniques mentioned so far are applicable for
both spatial and temporal grids, the literature cited so far has dealt

mostly with spatial subgridding. Bhallamudi et al. (2003) describe
a subtiming approach for flow and transport problems as a logical
extension of spatial subgridding. This approach can be used for
transient simulations that couple surface and subsurface flows or
that resolve temporal dynamics close to a pumping well or a con-
taminant plume. This approach uses small time-step sizes in areas
of so-called high activity and large time-steps elsewhere, which is
highly suitable for situations where large portion of the domain are
temporally overdiscretized. The subtime-step is selected such that
it is an integral portion of the larger time-step. Park et al. (2008)
used implicit subtime-stepping for simulating flow and transport in
fractured porous media using the Galerkin finite-element formu-
lation. This was applied to density-dependent flow and transport
simulations in predominantly discrete, highly conductive fracture
zones. In another study, Park et al. (2009) applied implicit subtime-
stepping for numerical modeling of the nonlinear coupled surface–
subsurface equation. This methodology was applied to enhance the
computational efficiency of integrated flow simulation in the San
Joaquin Valley, California.

Multiscale Parameter Estimation

In general, the goal of parameter estimation is to find model param-
eters (hydraulic conductivity, recharge, and so on) that minimize
the objective function. Typically, the objective function is the
sum of squared residuals between the observed data and the mod-
el’s predictions. A key aspect of multiscale parameter estimation is
determining how to construct the objective function. Should one
objective function be used for each scale? Or should one objective
function be computed by combining the data from all scales? Also,
should one objective function be used for each kind of observation
(hydraulic heads, stream flows, and so on), or should they be com-
bined into one objective function? Hill and Tiedeman (2007) posed
such questions and opined that since data is usually scarce, it is
better to use a single objective function that considers all data si-
multaneously by assigning appropriate weights to data at different
scales.

Several researchers have performed multiobjective calibration
for various reasons. Medina and Carrera (1996) coupled the param-
eter estimation of flow and solute transport parameters using both
head and concentration data. Madsen (2008) calibrated a rainfall–
runoff model using multiple objective functions that measured the
following aspects of their hydrograph: (1) overall water balance,
(2) overall shape of the hydrograph, (3) peak flows, and (4) low
flows. Khu et al. (2008) performed parameter estimation on a
hydrologic model using five objective functions. Separate objective
functions were used for groundwater levels and runoff from catch-
ments. Variables of the same type, but from different sites, were
grouped together using data mining techniques, creating one objec-
tive function for each variable. Keating et al. (2003) used a coupled
basin-scale and site-scale model to perform parameter estimation
and found that the parameters estimated from the two models were
not identical. They caution against the application of parameter es-
timates obtained from large-scale models to small-scale models and
vice versa. In the research reported in this paper, while the basin-
scale and site-scale models were hydrologically coupled, parameter
estimation was performed by considering weighted residuals at
different scales.

Motivation

A major drawback of implementing the nested model approach is
that the interaction between the parent and local models, of which
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there can be many, depends on the offline analysis and processing
of model modifications or simulation results from the parent model
to obtain boundary conditions and initial conditions (ICs) for the
local model. For example, once a simulation step is completed us-
ing the regional model, new boundary conditions and initial flows
(and solute transport conditions, if applicable) are determined for
each local model. Making modifications to models or processing
simulation results for use in different scales of models can be
time-consuming, especially when the flow field is unsteady or
coupled with a solute transport simulation, or if a feedback loop
is needed to account for potential significant two-way interaction
between parent and nested submodels. The effort involved may be-
come impractical when the offline conceptual changes must be
made iteratively or in more than one model. Because of this labo-
rious procedure, applications of the nested grid approach are lim-
ited, in most cases, to a very small number of submodels (e.g., one
or two), and are implemented with little flexibility. This has se-
verely limited the ability to take full advantage of the nested grid
approach for solving complex groundwater problems, especially
those that span multiple spatial scales.

No prior study has implemented parameter estimation for a mul-
tiscale model that allows communication between the different
models, such that the large-scale calibration may benefit from
the small-scale calibration and vice versa. In the research reported
in this paper, we address both the challenges of forward modeling
and inverse modeling by creating a framework that allows multi-
scale modeling and multiscale parameter estimation. The method-
ology that has been developed is presented in the next section, and
then an illustrative example of a lake augmentation project in south-
west Michigan.

Hierarchical Groundwater Modeling

In the research reported in this paper, HPDP is used to simulate a
complex surface water–groundwater system. To do so, further de-
velopment of HPDP was needed, including nested time-stepping,
numerical coupling of surface water and groundwater, and hierar-
chical parameter estimation. These enhancements are described the
subsequent subsections.

Nested Time-Stepping

In addition to resolving multiple spatial scales using the nested grid
approach, a multiscale transient model should be applied to resolve
multiple temporal scales. The basic principle is that a multitude of
child models with smaller time-steps are nested in one larger
time-step of their parent model. Temporal information propaga-
tion between upper and lower model levels is needed since the
boundary conditions along the parent–child model interfaces are
time-dependent. Therefore, in multiscale modeling, the nested
time-stepping is implemented in an eight-step hierarchical manner,
as follows:
1. The time-step, Δtl, at each model level is different, but is the

same in each patch (i.e., the so-called child) model for a given
model level.

2. Downscaling starts from the main (i.e., the so-called parent)
model and its initial conditions are needed to perform down-
scaling at t ¼ 0 for all level’s models such that ICs for every
submodel become available. Otherwise, ICs for every submo-
del must be user-defined.

3. Advancing to the next time-step with known heads at the cur-
rent time-step in nested time-stepping algorithm is vastly dif-
ferent from that of uniform time-stepping and is demonstrated

in Fig. 1. The difference is that there are not only shared time
nodes in the so-called time-grid system (solid lines in Fig. 1),
but also nonshared nodes (dashed lines in Fig. 1). Thus, both
spatial and temporal interpolation would be involved in this
algorithm. Considering one time-step in the main model as
one unit of the downscaling–upscaling loop in the nested
time-stepping algorithm, the local information updating ap-
proach (LIUA) is presented in Fig. 1 with a four-level exam-
ple, including the sequence of operations. The remaining steps
describe the LIUA for one unit of downscaling-upscaling.

4. Given the head at the previous time level n − 1, H0
n−1, (the

initial conditions when n ¼ 1), the head at the current time
level n, H0

n, is obtained for the main model by solving the
transient equation. These heads, H0

n and H0
n−1, are used to in-

terpolate heads on the parent–child model interface(s), form-
ing the time-dependent boundary conditions for the nested
time step in the child model(s). Temporal interpolation is ne-
cessary if time-step in child model is not the same as that of the
main model, whereas there is no need for temporal interpola-
tion when a so-called time node is shared by both child model
and its parent model (solid lines in Fig. 1).

5. In general, boundary conditions for model level l are derived
from model level l − 1, and the head distribution from the pre-
vious time step (referred to as ICs) is known. Then, transient
equations are solved for the first time step, Δtl. Temporal in-
terpolation is performed to obtain BCs for model level lþ 1 at
nested time step Δtlþ1 (Δtl> Δtlþ1, and usually Δtlþ1 can be
designed to be a factor of Δtl). At level lþ 1, now with the
necessary BCs and head distribution from the previous time-
step, all transient equations are solved. Temporal interpolation
is again used to obtain BCs for model level lþ 2 at nested time
step Δtlþ2 (Δtlþ1 > Δtlþ2, and Δtlþ2 can be a factor of
Δtlþ1). This procedure can be applied at each model level until
the last child model is solved.

6. Once the transient equations for all nested time steps in the last
child model are solved (completion of Sequence Operation 10
in Fig. 1), the heads at the nonshared time node and the down-
scaled BCs from its parent model (Sequence Operation 11) are
used to solve the transient equation for the next time step in the
last child model (Sequence Operation 12). This solution pro-
vides the BCs for the parent model (Sequence Operation 13) to
advance to the parent model’s calculations at the next time-
step in the parent model level. Thw downscaling associated
with Sequence Operation 14 is necessary to solve the transient
equation for model level M2 (Sequence Operation 15). With
the resulting solution, temporal interpolation is possible
(Sequence Operation 16) to provide BCs (Sequence Operation
17) for solving the next time-step in model level M3 (Sequence
Operation 18). This process of information exchange between
child models and parent models is continued (Sequence
Operations 19–43) until all solutions are obtained for all child
models and the main model in this one time-stepping unit
(i.e., one downscaling–upscaling unit).

7. If a shared so-called time node (at level l) is also shared with
l − 1 time node, the upscaling of BCs will proceed upward
until this shared time node path line ends.

8. Once convergence occurs in the previous downscaling–
upscaling loop, heads in each model will be used as the ICs
of the next time-stepping unit loop, and then Steps 5–8 are
repeated until the total simulation time is reached.

Table 1 lists the number of times each algorithm operation is
applied in one time-stepping loop. This includes partial differential
equation (PDE) solving, temporal interpolation, and boundary
condition interpolations.

© ASCE 04015027-3 J. Hydrol. Eng.
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In the nested time-stepping algorithm, temporal interpolation is
needed to obtain heads along the boundary of the child models that
utilize a smaller step-size. Temporal interpolation is not only ap-
plied to heads along the interfaces of parent–child models, but also
over the whole computational domain of a child model. The ICs for
the nested time steps is provided by the parent model in which the
time step is larger than that of the child model. If a so-called shared
time nodes scheme is used in designing the nested time step system,
i.e., the nested time step is a factor of parent model’s time step
(n ¼ ΔtP=ΔtC), then the head values at shared time nodes and
nonshared nodes can be easily calculated as done for the spatial
grid layout where nodes are shared.

Initial Conditions

The initial conditions (or previous time-step head distribution) for
every advancing time step in a child model are the heads at the
previous time-step in the same model. For the parent model, initial
conditions are obtained from the heads at the previous time-step by

directly solving the PDE. The heads in the area that is common to
the parent and child models are updated from the child model by
means of upscaling.

Boundary Conditions

In the case of updating BCs along the path of so-called share time
nodes, both the parent and child models are at the same time level
and it is not necessary to perform any temporal interpolation.
Spatial interpolation will be required to define updated boundary
conditions from either the parent or child model.

As seen in Fig. 1, dashed lines are actually the extensions of
those solid lines that miss so-called current information from their
parent model. The function of the downscaling along the dashed
lines is to provide missing current information from a parent model
at the nonshared (so-called broken) nested time-step of a child
model, such that calculation in child models can advance to the
next nested time-step. For example, assume that time-step in a pa-
rent model is ΔtP, and ΔtC is the time-step in the child model. Let
there be three nested time-steps in one ΔtP, or ΔtP ¼ 3ΔtC. The
transient equation is solved in the child model at time level tþΔtC
with boundary conditions temporally interpolated from heads at
time levels t and tþΔtP in the parent model. A similar procedure
is used to derive boundary conditions at time level tþ 2ΔtC. If a
linear interpolation is applied, then boundary conditions (pre-
scribed head) assigned to the child model at time levels tþΔtC
and tþ 2ΔtC can be expressed as

HCðtþΔtCÞ ¼
2

3
HPðtÞ þ

1

3
HPðtþΔtPÞ ð1aÞ

HCðtþ 2ΔtCÞ ¼
1

3
HPðtÞ þ

2

3
HPðtþΔtPÞ ð1bÞ

Fig. 1. One unit of local information updating approach to resolve multiple temporal scales

Table 1. Total Number of Operations in One Downscaling–Upscaling
Loop

Operation

Main model Level 1 Level 2 Level 3

M0 M1 M2 M3

Solving PDE 1 2 4 8
Temporal interpolation 1 2 4 —
Boundary conditions
for downscaling

2 4 8 —

Boundary conditions
for upscaling

— 1 2 4

© ASCE 04015027-4 J. Hydrol. Eng.
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where HC = head for child model; HP = head for the parent
model.

Generally, if the number of nested time-steps in a child model
is n, then their boundary conditions can be derived from the parent
model in the form

HCðtþ iΔtCÞ ¼
n − i
n

HPðtÞ þ
i
n
HPðtþΔtPÞ; i ¼ 1; ðn − 1Þ

ð2Þ

Coupling between Groundwater and Surface Water

The mathematical model for interaction between surface and ground-
water is described by a system of two partial differential equations.
These two governing equations must be coupled and solved
simultaneously since the simulated system involves interaction terms
between groundwater and surfacewater; in this case, lakes, wetlands,
and reservoirs. The groundwater flow is governed by

Ss
∂HGW

∂t ¼ ∇ðK · ∇HGWÞ − qGW þ qSW ð3Þ

where Ss = specific storage coefficient; HGW = groundwater head
(L), t = time; K = saturated hydraulic conductivity tensor; qGW
(L=T) = groundwater source/sink terms; and qSW (L=T) = incoming
or outgoing discharge from the surface water body. The source/sink
term can be discretized as

qSW ¼
XN
i

ðHSW
i −HGW

i ÞLi ð4aÞ

HGW
i ¼ HSW

i if HSW
i > Elevb

Elevb if HSW
i < Elevb

ð4bÞ

where HGW
i (L) = groundwater head in the ith cell that has

interaction with surface water; HSW
i (L) = surface water head corre-

sponding to its counterpart of groundwater head HGW
i ; LiðT−1Þ =

leakance of the interactive cell; Elevb (L) = bed elevation of the sur-
face water body (which could be spatially variable); and N = total
number of surface water cells.

The surface water bodies’ water level, HSW , is governed by the
subsequent continuity equations

∂VSW

∂t ¼ QSW −QGW ð5aÞ

∂VSW

∂t ¼ SSW
∂HSW

∂t þHSW ∂SSW
∂t ð5bÞ

where VSW = storage volume of the water body (L3); QSWðL3=TÞ =
incoming discharge; QGW (L3=T) = incoming or outgoing dis-
charges from groundwater; SSW = surface water area (L2); and
HGW = surface water level (L). Assuming SSW does not vary with
time, the governing set of coupled equations for the groundwater–
lake system is

SSW
∂HSW

∂t ¼ QSW −QGW ð6aÞ

QGW ¼
XN
i

ðHSW
i −HGW

i ÞLiAi ð6bÞ

HGW
i ¼ HSW

i if HSW
i > Elevb

Elevb if HSW
i < Elevb

ð6cÞ

where Ai = area of the ith interactive cell (L2), which could be a
function of time and of water elevation. Interaction of surface water
and groundwater will be implemented through constantly updating
the coupling terms qSW in Eq. (3) and QGW in Eqs. (5a) and (5b) in
a nonlinear fashion. Numerical schemes to approximate Eq. (3)
have already been described previously. The surface water head
is approximated by applying backward difference scheme to the
time derivative and an explicit scheme to the coupling terms in
the right-hand side (RHS) of Eqs. (5a) and (5b)

HSWðnþ1Þ ¼ HSWðnÞ

þ Δt
SSW

�
Qðnþ1Þ

SW −XN
i

ðHSWðnÞ
i −HGWðnÞ

i ÞLiAi

�
ð7Þ

where n and nþ 1 denote previous and current time levels, respec-
tively; and Δt = time-step.

Hierarchical Parameter Estimation

In multiscale modeling, both the model parameters and the ob-
served data can be at multiple scales, making the parameter esti-
mation more difficult. For example, calibration of a regional
model involves data measurements at multiple scales, such as draw-
down results from an aquifer test, which are mostly at site scale,
and static water levels at the regional scale. If this model were to be
calibrated without distinguishing between site-scale and regional-
scale data, oftentimes the problem may tend to become ill-posed
because the relatively large grid sizes used for a regional model
cannot accurately characterize site-scale drawdown. Therefore, it
is necessary to have a series of nested models that can capture the
different scales of variability and to calibrate these models. Nested
modeling can thus integrate information from different scales ap-
propriately, which can enhance the predictive abilities of multiscale
groundwater studies (Yeh et al. 2008).

A key consideration is how to assign model parameters in the
main and nested models. Imagine a hierarchical model with one
parent and one child model, and let there be observations of hy-
draulic head for both the parent and child models. If these models
were calibrated, the value of hydraulic conductivity that best fits the
parent model’s observations need not necessarily be the same as the
value that best fits the child model’s observations. Thus, the model
parameters should have different values at different scales.

The procedure for hierarchical parameter estimation is similar to
traditional parameter estimation, except that there are many models
and each has its own calibration targets and calibration parameters.
Instead of optimizing each model individually, all models are
optimized together by computing one objective function that com-
bines residuals from all the models, while assigning an appropriate
statistical weight for parameters from a given model level. For ex-
ample, a site-scale model may have residuals of the order of cen-
timeters (inches) while the regional model may have residuals of
the order of meters (feet). Both residuals cannot be assigned equal
importance in the calibration.

This process of combining the residuals from different models
ensures that a change in the regional model can influence the site-
scale model (and vice versa). This parameter estimation approach
also benefits from the two-way iterative head/flux coupling be-
tween the models; every model can influence the calibration of
other models in the hierarchy. Computer software UCODE (Poeter
and Hill 1999; Hill and Tiedeman 2007) was used to perform the
hierarchical parameter estimation.

Assume there are models at N different scales, each with
some unknown model parameters ~a1; ~a2; : : : ; ~aN which have to

© ASCE 04015027-5 J. Hydrol. Eng.
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be estimated. Let each scale have a set of observations
~Y1; ~Y2; : : : ; ~YN . The residuals are defined as

~rið~ai; ~xÞ ¼ ~Yi − ~Y�
i ð~ai; ~xÞ i ¼ 1,2; : : : ;N ð8Þ

where ~Y�
i ð~ai; ~xÞ = simulated values at the corresponding observa-

tion in space and time. Each residual is a vector depending on the
number of observations at each scale. The objective function for the
ith scale can be expressed as

si ¼
X

ð
ffiffiffiffiffiffiffiffiffiffiffiffi
wSC−i
j

q
rSC−ij Þ2 j ¼ 1,2; : : : ;NSC−i ð9Þ

where wSC−i
j = weighting for the jth observation; rSC−ij = residuals

for the jth observation; and NSC−i = total number of observations,
all at ith scale (i.e., all patches).

The weights in this context may be assigned to account for the
different types of observations, i.e., heads and flows. Since the
magnitude of the residuals for these observations are different,
assigning appropriate weights to them (see the subsequent text)
ensures that all types of observations have equal importance
within each submodel. The final objective function for the whole
system is taken as the weighted sum of the weighted residual of
each scale as

S ¼
X

ws
i si ð10Þ

where ws
i = weighting for the ith model scale.

To optimize the objective function an iterative procedure that
equates the first derivative to zero is used, and thus obtains the
new value of parameters for the next iteration until the mathemati-
cal convergence criterion is met as shown next

JTð~aÞW~rð~aÞ ¼ 0 ð11Þ

where J is the Jacobian matrix with Jij ¼ ∂ri=∂aj; and W is the
weight matrix. Eq. (11) can be rewritten as

XM
m

ffiffiffiffiffiffiffi
wm

p
rm

∂½ ffiffiffiffiffi
wi

p P
rm�

∂~ai ¼ 0 i ¼ 1; : : : ;NP ð12Þ

where M ¼ NSC−1 þ NSC−2 þ : : : þ NSC−i = total number of ob-
servations; NP ¼ NP1 þ NP2 þ NPN = total number of parameters;
and wm = composite weighting computed as

wm ¼ ws
iw

SC−i
m ð13Þ

where wSC−i
m = weighting for themth observation at scale i. Eq. (11)

can be solved by the modified Guass–Newton method.
The weights in Eq. (10) are for the different scales and can be

fixed by a process of trial-and-error. In general, the weights for the
smaller scales are larger than the weights assigned at larger scales.
This is evident because the residuals and objective functions for
the smaller scales will be, in general, smaller in magnitude than
those for the larger scales. A commonly adopted value for the
weight is ðσ2Þ−1, i.e., the reciprocal of the variance for the param-
eter of interest.

With the appropriate weights assigned, the objective function is
then minimized to obtain the model parameters that best fit the ob-
servations at all the different scales. The Jacobian matrix for this
case will be a composite, comprising all the residuals and all param-
eters from all scales. Thus, if there are n observations andm param-
eters in the entire modeling hierarchy, the Jacobian matrix will have
dimensions n ×m.

If the hierarchical model is a transient model with both down-
scaling and upscaling, the parameter estimation process will consist
of the following six steps:
1. Make an initial guess of model parameters,
2. Run the hierarchical model for entire simulation length with

the downscaling–upscaling iteration performed for every
time step,

3. Compute residuals for entire simulation length,
4. Recompute model parameters,
5. Check convergence criterion (if satisfied, go to Step 6; other-

wise, go to Step 2), and
6. Stop.

Illustrative Examples

In order to illustrate the hierarchical parameter estimation approach
two examples are presented, as follows: (1) a synthetic example that
shows that even for a relatively simple scenario, the traditional ap-
proach of parameter estimation results in nonunique solutions,
which was overcome by using the hierarchical approach; and
(2) a real-world application of hierarchical modeling and parameter
estimation, for a coupled surface-water-groundwater system.

Synthetic Example

Problem Statement

The goal is to estimate hydraulic conductivity (K) and recharge (ε)
within the study area (Fig. 2), consisting of a fairly homogeneous
sandy aquifer (3,000 × 3,000 m) with unknown K and some local-
ized heterogeneity (clay zones). The hydrologic features in this area
include four perfectly connected water bodies (small lakes and a
river), and a uniform but unknown recharge. A pumping well
(2,500 m3=day) is situated near a lake and a known clay layer.
A monitoring well is located about 20 m away from the pumping
well. The western edge of the study area has a constant head
boundary (river), while the other edges are no-flow boundaries.

Problem Design

The study area is simulated at a fine resolution, both spatially
(10 m) and temporally (10 s), using K ¼ 100 m=day and
ε ¼ 25 cm=year. This model is treated as the so-called truth and
is then sampled at random locations and also at various times at
the monitoring well location to create a time series. Then, and at-
tempt is made to calibrate the model using only the sampled data in
order to verify if the parameter estimation approach can reproduce
the original parameter values. In this parameter estimation problem
the only unknowns are the parameters themselves, since the con-
ceptual model (sources/sinks, boundary conditions, and geologic
framework) is identical to the one used to generate the data. The
specific steps that were used in this process are given, as follows:
• Create a single steady-state model of the study area with the

pumping well turned off.
• Sample the steady-state model at a few scattered points to create

synthetic head data. These data represent the regional-scale
processes.

• Create a transient model at the same resolution to simulate the
dynamics created by turning the pumping well on. The steady-
state model heads provide initial conditions to the transient
model. Due to high K and the presence of a lake nearby, the
transient model quickly reaches steady-state (∼7 min). The
time-step used in this model is 10 s.

© ASCE 04015027-6 J. Hydrol. Eng.
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• Sample heads at the monitoring well at multiple times to capture
the drawdown curve. These data represent the local-scale
processes.

• Use the generated synthetic data to perform parameter estima-
tion assuming K and ε are unknown. The synthetic data loca-
tions are shown in Fig. 2 and data values are listed in Table 2.

Parameter Estimation

Given the information about the study area and the data available
for calibration, a few different approaches can be used to estimate K
and ε. The first, and relatively simplest, approach is to simulate and
calibrate a coarse regional model. The drawback of this approach is
that it can use only the regional static water level data for calibra-
tion, because the regional model lacks the spatial or temporal
resolution to resolve the local transient dynamics. The synthetic
example demonstrates that when such a model is calibrated it
can result in nonunique solutions. Another approach would be
to use a local model around the pumping well to simulate the tran-
sient dynamics. This model cannot use the available regional head
data, and moreover, would require boundary conditions from a
regional model, which as described previously produced nonunique
solutions. Yet another approach would be to use a single high-
resolution model with a uniform grid that captures both the regional
and local dynamics simultaneously. This approach is computation-
ally very intensive and may be impractical for parameter estima-
tion. Such dilemmas are very commonly faced in practical
groundwater modeling and are not particular to this synthetic ex-
ample. An effective way to tackle such issues is to use a hierarchical
approach, which simulates the regional and local dynamics simul-
taneously. This approach has the advantage of making full use of
existing data while still being computationally feasible.

The goal of parameter estimation is to vary the parameters
such that the objective function is minimized. In order to demon-
strate the improved ability of the hierarchical approach, objective
function w is computed for a range of values of the calibration
parameters and compared it to a conventional regional model’s
objective function that ignored local data. In the hierarchical
approach, the regional and local model’s residuals (difference be-
tween simulated and observed values) were first computed
[Eq. (8)]. The objective function for each scale was then computed
as the weighted sum of the squared residuals [Eq. (9)]. In general,
the weights are assigned to reflect the different types of data. In
this case since the data were of the same type (heads), the weights
were all equal. The overall objective function was then calculated
as the weighted sum of the objective functions at each scale
[Eq. (10)]. In this example, equal weights were assigned for the
different scales.

Fig. 2. Study area showing regional and submodel areas, sources and sinks, heterogeneity, and locations of monitoring wells

Table 2. Synthetic Data

Steady-state data
Transient data

(Monitoring well)

Location Head (m) Time (s) Head (m)

W1 1.338 10 1.928
W2 0.295 20 1.764
W3 0.991 40 1.695
W4 0.434 60 1.67
W5 0.008 80 1.655
W6 0.048 100 1.646
W7 0.739 150 1.634
W8 0.696 200 1.629
W9 0.871 300 1.626
W10 0.234 400 1.624

© ASCE 04015027-7 J. Hydrol. Eng.
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Results and Discussion

The objective functions for a single regional model and the hier-
archical model are shown in Fig. 3. Such plots are very useful
as they can easily identify the parameter values that minimize
the objective function. It can also clearly indicate if the solution
is nonunique or not, i.e., if more than one combination of parameter
values can minimize the objective function. The regional calibra-
tion shows that the objective function is minimized for multiple
combinations of K and ε, and therefore the parameter estimation
problem is ill-posed, in the sense that the solution is nonunique.
This is because when K and ε are increased/decreased pro-
portionally, there is no effect on the heads. If additional data
(e.g., time-series head data, flux data, and so on) are added, then
the calibration may become more unique. Hierarchical calibration,
on the other hand, produces a clear global minimum for the objec-
tive function that optimizes both the regional and local model
simultaneously. The parameters obtained from the hierarchical cal-
ibration are K ¼ 100 m=day, and ε ¼ 20 cm=year, which are very
similar to the true solution. The reason inability to recover the exact
solution (K ¼ 100 m=day and ε ¼ 25 cm=year) is because the so-
called true model used a finer grid than the hierarchical model.
From this simple synthetic example it is clear that failing to use
all available data for calibration can result in ill-posed problems.
This synthetic example clearly illustrates that the hierarchical ap-
proach offers the flexibility of using all available data for calibra-
tion and also that it can improve the ability to uniquely estimate
model parameters. This is important because in real-world situa-
tions many more parameters may need to be calibrated and avail-
able data are rarely enough to uniquely constrain the calibration.

Real-World Example

The hierarchical modeling and parameter estimation process is
illustrated through its application to a model used for predicting
the feasibility of augmentation of the Sister Lakes in southwest
Michigan. Sister Lakes consist of three interconnected lakes, as
follows: (1) Round Lake, (2) Big Crooked Lake, and (3) Little
Crooked Lake. There are three other nearby surface bodies
[(1) Cable Lake, (2) Dewey Lake, and (3) Magician Lake]. Lake

augmentation for the Sister Lakes was planned such that water
would be pumped from the irrigation well (IW) and discharged
to the Sister Lakes to increase the lakes’ water level. Fig. 4 shows
a plan view of the entire modeling domain, including the location of
the irrigation well and two observation wells (OWs), i.e., (1) OW-1,
and (2) OW-2.

In an area where high pumping rates are applied, the effect of
pumping is highly localized and changes rapidly with time. This
water is pumped back into the lake and causes a sudden increase
in water level in the lake. As the effect of pumping reaches the other
lakes, they start providing water to the pumping well, causing a
reduction in their water levels. At the same time, the increased
water level in the Sister Lakes will induce flow from the Sister
Lakes towards the other lakes. To simulate this complex flow sys-
tem, it is necessary to create models at multiple scales that can cap-
ture the spatial and temporal dynamics and to capture the complex
groundwater–surface water interactions. These multiscale models
also need to be calibrated. Therefore, the hierarchical modeling
and parameter estimation detailed previously is appropriate for the
Sister Lakes site.

Conceptual Representation

The modeling area was the entire watershed shown in Fig. 4, even
though the Sister Lakes and all observations needed for calibration
were far from the no-flow watershed boundaries. The model was
created using the perturbation approach, i.e., the initial condition of
the model was of no flow input throughout the model domain. This
ensures that the effect of other sources of water, such as recharge,
are not taken into account and only the effect of pumping on lake
levels is studied. Therefore, the changes in head (drawdown)
caused by pumping are used for calibration instead of absolute head
values.

Because the change in head was simulated, the absolute values
of the aquifer elevations were not needed; the aquifer top elevation
and thickness were assigned at a constant value of 1 and 80 m,
respectively. The irrigation well was set to pump at 4,360 m3=day,
and this water is then pumped back into the Sister Lakes. The ini-
tial heads in the aquifer and all the lakes was set to 0 m. The

Fig. 3. Comparison of objective functions for the following: (a) regional model calibrated with regional data; (b) hierarchical model calibrated with
both regional and local data

© ASCE 04015027-8 J. Hydrol. Eng.
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hierarchical model parameters and the time-stepping information
are defined in Tables 3 and 4, respectively. The models were
run with a two-way head-coupling, i.e., hydraulic head was used
for both downscaling and upscaling. In addition, the interaction be-
tween the lakes and the aquifer was modeled as a coupled process.
In the hierarchical modeling framework, the child models were spa-
tially nested, but no temporal nesting was applied. Therefore, the
entire modeling framework utilized a time-step such that the small-
est child model could sufficiently capture the temporal drawdown
dynamics. The domain and grid size for each model level were
chosen such that the fine-scale (submeter) drawdown effects at
the lowest submodel level were adequately captured. The general
principle in nested modeling is to create as many model levels as
necessary while limiting the model grids to sizes that can be easily
handled using the computer available (Afshari et al. 2008).

Transient Calibration and Modeling

Before running the entire simulation length of the model, it was
calibrated using the transient data from a 72-h onsite pumping test

Fig. 4. Plan view of model site

Table 3. Hierarchical Model Parameters

Model
level Model name

Domain size
(km × km) Grid

Grid
size (m)

0 Main model 37 × 27 120 × 88 311
1 Submodel 1 6.8 × 4.7 111 × 76 62
2 Submodel 2 0.56 × 0.50 73 × 65 8
3 Submodel 3 0.186 × 0.195 97 × 101 2
4 Submodel 4 0.011 × 0.008 49 × 33 0.2

Table 4. Time-Stepping Information

Duration (day) Time-step Δt (day)

0 < t ≤ 0.1 0.002
0.1 < t ≤ 0.5 0.01
t > 0.5 0.05

Fig. 5. Comparison of simulated an observed heads at Observation
Well 1 (i.e., OW-1) and Observation Well 2 (i.e., OW-2), six private
wells, and a surface water feature

© ASCE 04015027-9 J. Hydrol. Eng.
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with a pumping rate of 4,360 m3=day applied at the irrigation well
location. The calibration targets were the transient hydrographs and
drawdown at two groundwater observation wells and the drawdown
observed at six private wells 72 h after pumping began. A staff gage
that measured the change in water level in Big Crooked Lake after
72 h of pumping was also used. The calibration parameters were the
hydraulic conductivity and specific yield of the aquifer and the
lakes’ leakance values. However, instead of estimating the param-
eters themselves, their multipliers were selected for calibration

K ¼ FKKr ð14aÞ

Sy ¼ FSSy0 ð14bÞ

L ¼ FLL0 ð14cÞ

where K = hydraulic conductivity of the aquifer (LT−1); FK =
multiplier for conductivity; and Kr = spatially explicit, interpolated

Fig. 6. Calibration hydrograph for the following: (a) OW-1; (b) OW-2

Fig. 7. (a) Head hydrograph at Sister Lake, L (R, D); (b) head hydrograph at Magician Lake, L (M); (c) head hydrograph at Dewey Lake; (d) head
hydrograph at Cable Lake

© ASCE 04015027-10 J. Hydrol. Eng.
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conductivity from the Wellogic database (MDEQ 2006). Similarly,
Sy is the specific yield of the aquifer, FS is its multiplier, Sy0 is a
given specific yield (constant over the domain), L is the lake lea-
kance (T−1), FL its multiplier, and L0 the given lake leakance (the
same for all lakes). The initial estimates for FK, FS, and FL were
0.4, 1.0, and 1.0, respectively, which were then calibrated. The val-
ues for Sy0 and L0 were 0.0005 and 1.0 day−1, respectively. Values
of Sy0 and L0 are constant in the entire hierarchy of models; thus,
there are only three parameters to be estimated. The weights for the
different scales were set to a value of 1, because change in head was
used and not the absolute head values to calibrate the models.
Therefore, the observations at different scales were all equally
important. Using the parameters obtained from the transient cali-
bration, the model was run for its entire simulation length of
3,000 days. This longer-period simulation is for the conditions
under consideration and is not a real prediction of future conditions
which may require more detailed information (e.g., climate condi-
tions, future land use and land cover, and so on). The results from
the simulation are discussed in the subsequent subsection.

Results and Discussion

The simulation was completed after about 24 h with a 3.2-GHz
CPU with 4 GB of random-access memory (RAM). The results
of the transient hierarchical parameter estimation are shown in
Figs. 5 and 6. The calibration was satisfactory because the model
was able to capture the transient dynamics in the hydrographs for
both observation wells. The multipliers FK , FS, and FL obtained
from calibration were 0.4989, 200, and 0.77495, respectively. The
resulting specific yield was 0.0003875 and lake leakance was
61 day−1.

Fig. 7(a) shows the hydrograph for Sister Lakes, which shows a
steady increase in water level reaching steady state at ∼0.25 m after
approximately 1,500 days. Similarly, Figs. 7(b and c) show the hy-
drographs of Magician Lake and Dewey Lake, respectively,
revealing a gradual decline in water level and then recovery of a
small portion to reach a steady-state towards the end of the simu-
lation. Fig. 7(d) shows Cable Lake’s hydrograph, which varies from
all the others in that it shows a slight decrease in water level in the

Fig. 8. Head contours (meters) from all model levels after t ¼ 3,000 days
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initial days of pumping, and then recovers at later times to an in-
creased water level relative to its initial condition. Fig. 8 shows the
head contours and the flow field created from the simulation of
3,000 days.

Fig. 9 shows a cross section that passes through all the lakes in
the model. The change in head along this cross section is shown in
Fig. 10, and indicates that the Sister Lakes saw the greatest increase
in water level of approximately 0.3 m. Although Cable Lake did not
directly have water pumped into it from the irrigation well, its water
level increased by about 0.06 m (in spite of an initial decline
in water level). Magician Lake, which is the largest and the lake
closest to the pumping well, saw the greatest decline in water level
at 0.16 m.

The transient mass balance is shown in Fig. 11. A close inspec-
tion of the mass balance shows that after 1 day of pumping, the
outflow from Sister Lakes is ∼46% of the pumping rate, and con-
tinues increasing to ∼49% after 4 days of pumping. Eventually, the
outflow from Sister Lakes is equal to all the water being pumped.
However, the head contours suggest that not all the water goes di-
rectly to the pumping well. Some of this water flows into the nearby
lakes, Cable Lake and Dewey Lake. The outflow from Cable Lake
is ∼5% of the pumping rate after 0.5 days. Subsequently, this

outflow decreases steadily as a result of increasing inflow from
Sister Lakes. This inflow continues to increase and eventually a
steady-state is established. Examining the head contours reveals that
some of the outflow from Cable Lake goes to the pumping well and
the rest flows to Dewey Lake, and possibly to Magician Lake.

The effect of pumping takes almost 0.025 days to reach Dewey
Lake, after which the outflows from Dewey Lake gradually in-
crease. After more than 20 days of pumping, it starts receiving in-
flows from the other lakes. By the end of the simulation, Dewey
Lake reaches steady-state. In addition, the head contours suggest
that the entire outflow from Dewey Lake goes to Magician Lake.
The outflow from Magician Lake, similar to that from Sister Lakes,
is approximately 46% of the pumping rate after 1 day of pumping.
This increases to ∼47% after 4 days of pumping, and then starts
decreasing. This decrease in outflow is accompanied by an increase
in inflow from the other lakes, eventually causing Magician Lake to
reach a steady-state configuration. Unlike the other lakes, the entire
outflow from Magician Lake has to necessarily go to the pumping
well, in order to close the loop, so to speak. This is evident both
from the head contours and the cross-sectional view, which show
that the only area with lower heads than Magician Lake is the
pumping well.

Conclusions

A hierarchical modeling approach for complex flow systems hav-
ing multiple spatial and temporal scales of variability was devel-
oped. A nested temporal grid layout was established that allows
local models to take multiple small time steps within one large time
step of the regional model. This approach is especially suited for
simulating the interactions between groundwater and surface water
(lakes and wetlands). A hierarchical parameter estimation that
could include both data and parameters at multiple scales was de-
veloped and illustrated through the use of a synthetic example. The
hierarchical modeling methodology was applied to a lake augmen-
tation system for the Sister Lakes in southwest Michigan. A hier-
archical framework consisting of five interlinked models was
created with two-way communication between the models. The
model was calibrated using drawdown data from a 72-h pumping
test. The calibrated model was then used to run the entire sim-
ulation of lake augmentation. This field example indicates that

Fig. 9. Location of cross section A–E on the site

Fig. 10. Head profile along cross section A–E

Fig. 11. Transient mass balance for the major sources and sinks
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hierarchical modeling and parameter estimation approach was able
to satisfactorily model real-world complexities.
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