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CHAPTER 1: INTRODUCTION 
 

This chapter provides an introduction to the current state of groundwater modeling, the Interactive 

Groundwater Modeling 3 (IGW 3) software and the new groundwater modeling paradigm it embodies, 

prospective applications for IGW 3, pointers for using this document and contact information. 

 

 

1.1  IGW 3 AND THE CURRENT STATE OF GROUNDWATER MODELING  

  

IGW 3 is a two-dimensional, real-time, interactive and visual software system for unified 

deterministic and stochastic groundwater modeling.  It is the culmination of over 4 years of 

research and testing by a considerable number of dedicated individuals. 

 

IGW 3 has been developed to take advantage of the enormous increases in computational speed 

and capacity that have led to the increasing importance of computational science and engineering 

in scientific research, real-world problem solving, and interactive teaching.  It is the inability of 

the current modeling paradigm to take full advantage of these increases that has led Dr. Shuguang 

Li and his associates to develop a new modeling paradigm, the embodiment of which is the IGW 3 

software package. 

 

1.1.1  CURRENT MODELING PARADIGM 
  

The traditional modeling paradigm employed by most groundwater modelers makes use of a 

sequential scheme based on batch processing and off-line visualization and analysis.  A bottleneck 

occurs because of the inefficient processes employed to move information between various models 

and to the visualization programs.  Modelers repeatedly rely on these transfer processes as they 

refine the conceptual model and system parameters through an iterative process that is central to 

the ‘art’ of modeling. 

 

The traditional modeling paradigm employs the following sequence of steps: 

 
 1) Create, modify, or adopt the code for a conceptual model, 

 2) Assign or modify model stresses, properties, and starting/initial conditions, 

 3) Solve the governing equations over the entire specified time span and store the results, 

 4) Process the results using a visualization package, 

 5) Compare with field data, 

 6) Analyze the results, and 

 7) Repeat the steps incorporating any desired adjustments. 

 

Under the traditional paradigm, modelers typically go off-line to change the conceptual model or 

the computational scheme.  Each change in the model or parameters necessitates that the other 

steps in the process be repeated.  Simple errors such as an incorrect value of a single model 

parameter may not be detected until many hours have been dedicated to additional and, because of 
the error, inapplicable data processing and visualization. 

 

It is the inherent inefficiencies of the traditional modeling paradigm that keeps the implementation 

of large-scale groundwater modeling prohibitively time consuming and expensive and as such 

restrict our understanding of subsurface flow and contaminant transport due to the fact that so 

much research cannot be feasibly conducted. 

 

1.1.2  A NEW MODELING PARADIGM 
 

The new modeling paradigm incorporated in IGW 3 allows all of the various models to be coupled 
and solved in parallel.  The computational, modeling, and visualization tasks are integrated.  This 
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allows the user to visualize the flow system’s behavior at every time step and evaluate its 

adequacy.  The computations can be suspended, the model parameters adjusted, and the 

computations restarted with very little effort. 

 

The basic concept is simple.  Instead of treating flow and transport separately, they are modeled 
concurrently.  Instead of treating regional-scale modeling, local-scale modeling, and site-scale 

modeling as different phases in a long sequential process, they are coupled and modeled 

simultaneously.  Instead of relegating the graphical presentation of results and their analysis to the 

‘post-processing’ phase, they are incorporated and updated as the computational results are 

obtained, after each time step. 

 

The new paradigm is summarized below. 

 

For time level n, perform the following steps: 

 

 1) Model the flow, 

 2) Model the subscale flow (if needed), 
 3) Track particles (if needed), 

 4) Model contaminant plume transport (if needed), 

 5) Model subscale contaminant plume transport (if needed), 

 6) Process data, perform mass balance and water budget, 

 7) Visualize the results, and 

 8) Proceed to time level n +1 and repeat the steps. 

 

 

This paradigm makes the IGW 3 software package unique and extremely powerful.   

 

 

1.2  IGW 3 SYNOPSIS  
 

The IGW 3 programming environment, its capabilities, and its applications are discussed in the 

following subsections. 

 

1.2.1  PROGRAMMING ENVIRONMENT 
 

The IGW 3 software package is comprised of two main programming modules: 1) the Visual 

Fortran (VF) Dynamically Linked Library (DLL) code, and 2) the Visual Basic (VB) user 

interface code.  In addition, a number of graphical and visualization libraries are bundled into the 
software.   

 

The VF DLLs are embedded into the VB code and perform the intensive finite-difference and 

statistical calculations.  The VF code is limited to application in the innermost loop of the VB 

code – the single time step computation.  Thus the VB code controls the overall algorithmic logic 

to control the time steps, nonlinear iterations, iterations between submodels and their respective 

parent model, intermediate data processing, analysis, integration, and visualization.  It is this 

configuration of the codes that allows for the unprecedented interactivity that is the hallmark of 

the IGW 3 software package. 

 

1.2.2 CAPABILITIES 
 

IGW 3 provides an interactive, graphical environment for defining the aquifer framework, for 

inputting parameters, properties and stresses, for changing grid resolution, solvers, numerical 

schemes and modeling methods, for controlling and managing program execution, and for 

integrating, overlaying, and visualizing data and results. 
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The software takes advantage of object-oriented programming and is designed such that the user 

can, at any time, pause the simulation to edit any aspects of the modeling process and 

subsequently restart the simulation with the adjusted parameters being incorporated into the model 

at that exact point.  At any time the modeler is able to initiate or stop particle tracking, plume 

modeling, subscale modeling, and stochastic modeling.  After each time step, the user can see 
updated results presented in a meaningful way.   

 

Specifically, the IGW 3 interactive environment allows an investigator, at any time during the 

modeling process: 

 

 1) To modify the flow model and/or analyze data; 

 

The modeler can input and edit model boundaries, conceptual assumptions, aquifer 

structures and properties, and stresses. These changes can be imposed over any 

graphically specified area - independent of the spatial and temporal discretization 

scheme employed. In addition, data describing any aquifer property or spatial 

parameter at scattered locations through out the modeled region can be analyzed 
using advanced regression, interpolation, and statistical simulation techniques. 

 

2) To convert the conceptual model into a numerical model; 

 

The modeler may select and change numerical parameters such as time step and 

grid spacing, the discretization schemes, solution methods, solver parameters, and 

spatial interpolation techniques. 

 

3) To initiate particle tracking and/or reactive contaminant transport modeling; 

 

This will permit description of common sources of groundwater contamination, 
including polluted rivers and lakes, polluted rainfall and artificial recharge, waste-

well injections, as well as, instantaneous spills and continuous sources with a time-

dependent loading rate. 

 

4) To develop nested submodels of flow and transport; 

 

Modelers may define sub-model regions within a larger model.  Boundary 

conditions for the sub models are extracted from their parent model at every time 

step and they are solved immediately after the parent solution is obtained and thus 

essentially run in parallel.  

 

5) To examine the impact of un-modeled small-scale heterogeneity, data limitations, 

and uncertainty; 

 

The modeler may implement Monte Carlo simulations for the entire parent model.  

A number of parameters may be modeled as a random field or a random constant, 

and any temporal stress to be modeled as a 1-D stochastic process characterized by 

any of a variety of statistical models1. Flow and transport simulations are 

automatically “recomputed” for the various property and/or stress realizations. The 

most recent realizations will be employed as they become available to generate 

point statistics (e.g., probabilities at any interactively specified monitoring well) 

and spatial statistics (means, uncertainty, and correlations) that can be mapped and 

visualized as the simulation proceeds. Best available probabilistic characterizations 
are presented and recursively improved or updated as the number of realizations 

increases. 

 
1 At the time of publishing, only hydraulic conductivity is available to be modeled as a random field.  All 

other parameters are held constant throughout the Monte Carlo simulation.   
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6) To graphically present model characteristics and results;  

 

The user may opt to present any combination of model inputs and/or outputs in the 

graphical display (e.g., conductivity, aquifer thickness, recharge, heads, velocities, 

plume concentration distributions, drawdown distributions, well influence areas, 
source areas, and wellhead protection areas).  In addition, the user may opt to have 

the software compute and graphically display solute mass, water fluxes and/or 

water budgets over any specified zones or along any specified “compliance 

surfaces” or compute and graphically display heads and contaminant 

concentrations as a function of time at a monitoring well. 

 

and 7) To customize graphical presentations. 

 

The modeler may modify, among other things, the method of presentation, number 

and order of parameter layers displayed, legends, levels of detail, and display-

mode of contours, isosurfaces, velocity vectors, fence diagrams, and x-y plots.  

 
 

IGW 3 is also very flexible in that it allows the modeler to adjust the degree of steering at any 

time, from extremely fine to very coarse.  Specifically, the software allows the investigator: 

 

1) To visually step through the iterative process of solving a matrix system; 

 

This provides an intuitive feel for the rate of iterative convergence and the 

performance of the matrix solver. In many cases, this pinpoints visually and 

directly the cause of many commonly encountered numerical problems (e.g., slow 

convergence or divergence caused by bad inputs, localized singular characteristics, 

localized extreme heterogeneity, locally very thin geological layer thickness.). 
 

2) To visually step through the iterative process of solving the non-linear governing 

groundwater equations; 

 

This is useful for helping a scientist to obtain an intuitive feel for the nonlinear 

aquifer dynamics or reactive kinetics. This also helps pinpoint directly and visually 

possible sources of common numerical problems associated with nonlinear 

iterations (e.g., solution divergence or slow convergence caused highly nonlinear 

locally desaturated aquifer dynamics). 

 

3) To visually step through the iterations between subscale and parent-scale 

modeling; 
 

This provides an intuitive feel for the interaction among flow and transport 

processes at different spatial scales (e.g., among regional scale, local scale, and 

site-scale; between subsystems) and the effectiveness and significance of the 

various schemes and tehniques used for model downscaling and upscaling. 

 

4) To visually step through time increments; 

 

This is the default steering mode. It allows scientists and engineers to visualize 

“instantly” the aquifer and plume dynamics in a naturally animated fashion. This 

also provides flexibility and efficiency in the flow and transport simulations and 
allows decreasing the time-step size when the simulation becomes difficult (e.g., 

when a plume moves close to a localized heterogeneity or an area in which a sharp 

change in the velocity occurs) and increasing it when the difficulty passes. 
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5) To visually step through stochastic model realizations;  

 

This allows scientists and engineers to visualize how heterogeneity translates into 

uncertainty because of data limitation and plausible realizations of flow and plume 

dynamics. The on-line recursive analysis dramatically decreases the turnaround 
time in distributed stochastic modeling. An investigator is able to visualize 

continuously updated probabilistic characterizations of the groundwater system. 

Although it often takes thousands of realizations before the final Monte Carlo 

simulation converges, one can obtain a good qualitative feel of the general 

statistical behavior of the system (i.e. ensemble means) after 20 to 30 realizations. 

 

and 6) To run the program in batch mode with interruption and feedback until the end 

of the overall simulation. 

 

This is useful towards the end of the overall modeling project when the system is 

reasonably understood, the conceptual representations, model parameters, 

modeling scenarios, and numerical discretizations and resolution and solution 
methods are finalized. In this case, we may be only interested in the ultimate end 

result (e.g., the plume distribution at the end of the simulation time span). There is 

no need to interact with the data or model solver, or visualize the temporal or 

incremental dynamics in between. This is dramatically more efficient than the 

traditional method of running multiple models under a fragmented batch paradigm. 

 

IGW 3 incorporates an innovative hierarchical and patch dynamics approach that effectively 

reduces a large-scale complex problem into a sequence of smaller tractable problems with many 

fewer degrees of freedom.  This dramatically decreases computational time and improves the 

matrix system condition and robustness of the solution process.  Practically speaking, this allows 

for an investigator: 
 

 1) To define a submodel that runs in parallel with its parent model; 

 

2) To define a hierarchy of nested models (i.e. a submodel within a submodel);  

 

Successive sub-models are needed when the area of detailed interest is very small 

and yet a large modeling domain is needed in order to capture the large-scale 

regional control. It is particularly useful when the aquifer in question exhibits 

multiple scales of variations, as is often the case in real-world situations. 

 

and 3) To define multiple submodels or multiple nested hierarchies in any level of the 

overall model hierarchy.  
 

Modeling multiple streams of hierarchical systems is needed when there exist 

multiple detailed areas of critical importance (e.g., multiple pumping centers in a 

groundwater basin; multiple contamination sites in an industrial area, multiple hot 

spots at one site, etc.) 

 

IGW 3 is capable of simulating unsteady flow, reactive transport, and transformation, including 

diffusion, dispersion, advection, decay, and sorption under linear and nonlinear isotherms in 

saturated geological media. It also allows simulating non-ideal transport in dual porosity and dual 

permeability media (e.g., fractured rocks), rate-limited mass transfer, linear and nonlinear reaction 

kinetics, and flow and transport and uncertainty propagation in “randomly” heterogeneous media. 
These capabilities are made possible through state-of-the-art computational methodologies and 

many significant algorithmic innovations such as: 
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 1) An innovative flow solver for general anisotropic aquifer systems; 

 

Most traditional finite difference discretization schemes lead to ill-conditioned 

matrix systems when the number of degrees of freedom is large and the major 

orientation of anisotropy deviates significantly from the rectilinear coordinate 
system.  The ill-posed matrices often cause slow convergence, numerical 

oscillations, physically unrealistic solution, or total solution failure. The IGW 3 

flow model adopts an innovative numerical scheme that accounts analytically for 

the variable orientation of anisotropy. The numerical coefficients, which 

characterize the performance of the scheme, vary naturally and analytically with 

the orientation and magnitude of the anisotropy. The result is a significantly 

improved approach that is robust and more accurate than the traditional finite 

difference method. The improved scheme is monotonic and always leads to 

physically meaningful solution.   

 

 2) Innovative solvers for advection-dominated transport; 

 
Solute transport studies rely on numerical solutions of the classical advection-

diffusion equation. Unfortunately, solutions obtained with traditional finite 

difference and finite element techniques typically exhibit excessive numerical 

damping or spurious oscillations when advection dominates. Despite the intensive 

research and many significant developments over the past decades, there is still no 

one approach that can provide an accurate, efficient, and robust solution for all 

flow and transport situations. The IGW 3 transport code adopts a number of 

techniques to solve the advection-dominated reactive transport equation. These 

include: 

 

1) the Fully Implicit Finite Difference Method,  
2) the Modified Method of Characteristics, and  

3) the Random Walk method . 

 

Common in these schemes is that they all take into account the special character 

(e.g., almost hyperbolic nature) of the governing differential equations in their 

numerical approximation and provide analytically based “upwinding” that 

naturally adapts to the magnitude and direction of flow. These numerical schemes 

are highly accurate with little numerical dispersion or oscillations over a wide 

range of peclet numbers.  

 

3) An innovative scheme for general anisotropic dispersion; 

 
Traditional finite difference methodologies can lead to significant unphysical 

oscillations and negative concentrations when the dispersion is strongly 

anisotropic and the principal direction of anisotropy deviates from the grid 

orientation (as is almost always the case in reality). The IGW 3 transport code 

adopts an improved methodology for approximating anisotropic dispersion in 

general non-uniform flows. The new approach eliminates the numerical difficulty 

associated with the cross-dispersion by introducing a local analytical 

transformation. The result is a numerical scheme that is significantly more 

accurate and robust than the traditional finite difference schemes. 

 

 
 

 

 

 

 



 

7 

4) Efficient sparse matrix solvers; 

 

IGW 3 employs the highly efficient symmetric successive over relaxation method 

as its matrix solver.  In almost any case it is able to provide, a converged solution 

with a work count that increases almost linearly with the number of degrees of 
freedom. This solver is especially effective when they are applied with the new 

flow and transport schemes and under the new modeling paradigm. The new 

schemes guarantee that the matrix systems produced are diagonally dominant and 

positive-definite and the new paradigm allows modeling local sharp gradients and 

“hotspots” in high resolution without significantly increasing the overall number 

of nodes.  This incremental strategy makes it possible to obtain a converged 

solution even under most numerically difficult conditions 

 

5) Advanced interpolation and geostatistical simulation techniques; 

 

Spatial interpolation is critically important for groundwater modeling since the 

subsurface environment is inherently heterogeneous and yet available data are 
often very limited and sparsely scattered. Different techniques may lead to 

significantly different interpolations and different parameters may require different 

interpolation techniques. The IGW 3 model code adopts a set of advanced 

interpolation, regression, and statistical interpolation and simulation techniques 

that can adapt to a wide variety of subsurface conditions and parameter attributes. 

The statistical interpolation techniques used include ordinary and universal 

Kriging and inverse distance weighting.  The simulation techniques used include 

multi-gaussian, simulated annealing, P-field simulation, and various indicator-

based simulations.   

 

and 6) Interblock Interpolation techniques. 
 

Inter-grid block interpolation is important for heterogeneous flow and transport 

modeling, especially when the heterogeneity is strong or the small-scale variability 

is explicitly modeled/resolved as in stochastic simulations. The IGW 3 model code 

currently uses harmonic averaging. 

IGW 3 employs the advanced and efficient OpenGL rendering library and its Visual Tool Kit 

(VTK) as the main graphics engine.  These components allow for on the fly, integrated 

visualizations.  OpenGL is an industry standard in computer graphics, image processing, and 

visualization and the VTK adds additional support for such algorithms as scalar, vector, tensor, 

texture, and volumetric methods.  Advanced modeling techniques such as implicit modeling, 

polygon reduction, mesh smoothing, local cutting, slicing, contouring, and fence diagrams are 

supported in the VTK. 

 

1.2.3  PROSPECTIVE APPLICATIONS OF IGW 3 
 

The IGW 3 software package is relevant and applicable to a number of disciplines within the 
broad field of groundwater modeling. 

RESEARCH 

The proposed software environment can be used as an on-line numerical research laboratory. It 

provides a new and unique way for conducting groundwater investigation and experimentation. 

Traditional offline modeling and visualization systems work like taking pictures with film. The 

photographer (scientist or engineer) repeatedly arranges his subjects (conceptual features), releases 
the shutter (runs the model) until his 24 exposures (the entire batch simulation) are complete. He 

or she takes his film (saved data) to the processor (a visualization package), waits for the pictures 

to be developed and then looks at the pictures. Based on the photographs, he or she repeats the 
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process after rearranging the subjects, lighting and other imaging parameters. The proposed real-

time software environment works more like a video camera. The user arranges his subjects while 

watching the monitor to see the results. Changing the subjects or adjusting the light, immediately 

changes the image on the monitor. The user gradually changes parameters such as lighting while 

monitoring the results on the fly.  
 

The software’s ability to provide real-time modeling, real-time analysis, real-time visualization, 

and real-time presentation and the fact that the modeling environment is configurable on line 

virtually at any time (with respect to, e.g., the aquifer framework, the parameters and stresses and 

their variability, the numerical discretization, the interpolation schemes, the matrix solvers, and the 

ways of visualization) makes it an ideal tool for exploratory research, scientific discovery, 

conceptual modeling, hypothesis testing, trial and error, and process understanding. Within the 

new environment, a researcher can create visually an aquifer of desired configuration, 

characteristics, and properties, interactively apply desired stresses, and then immediately see the 

effect and investigate, analyze, and visualize the processes of flow and contaminant transport and 

transformation.  

 
The proposed on-line environment is ideally suited for subsurface research. It transforms the 

“dynamics” and “time scale” of model-based simulation. The new paradigm allows scientists’ 

thought processes to progress naturally and intuitively with the desired information visualized at 

the instant it is required. It enables them to visualize their thinking and significantly accelerate the 

interpretation process and better understand the subsurface. Being able to watch natural subsurface 

processes evolve over time and visualize instantaneously the complex interrelationships among 

hydrological and environmental variables under meaningful contexts sparks pivotal insights, 

giving rise to an intuitive grasp of the hydrogeological and biochemical processes that can't be 

readily obtained otherwise. The new real-time tool provides the much-needed direct link between 

ideas/hypothesis and significance/implications. It enables critical questions – known and unknown 

– to be answered quickly and allows the investigator to rapidly move from the inception of a 
concept to the testing of that concept. This new real-time software provides an environment that 

gives a real sense of continuous exploration and allows scientists singularly focus on the 

processes, the problems, the ideas, and the interpretations, pursue “every” lead without breaking 

his/her train of thoughts. It allows scientists to work much more in “environmental science and 

interpretive space” rather than “computer science and debugging space”.  The new technology 

offers a method of seeing the unseen and understanding the invisible.  

PROFESSIONAL PRACTICE AND OUTREACH 

On a more practical level, IGW 3 dramatically improves the productivity of groundwater site 

investigations. It changes the problem-solving role of engineers and professionals in large-scale 

modeling from heavily physical to cognitive and decision making. It represents an enabling 

technology. It creates new possibilities. The seamless real-time integration, real-time visual 

interaction, and the real-time processing capability allow a user to focus on the critical modeling 

issues, quickly and iteratively examine conceptual approximations, test modeling assumptions, 

identify dominant processes, evaluate data worth and sensitivity, and calibrate and validate the 

numerical representation.  

 

IGW 3 also provides an innovative and highly effective platform for professional communication 
and for facilitating community-based environmental protection related to groundwater resources. 

It broadens opportunities and enables the informed participation of citizens and improves 

interactions between government institutions, their constituents, and consultants. The benefits to 

the stakeholders from the real-time simulation technology include the following:  

 
1) Site planners, mangers, and regulators could experience the impact and effectiveness of 

management, sampling, and cleanup scenarios to improve policy-making decisions; They 

can become much more effective in engaging the general public and informing high-level 
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decision makers about the implications of the fate and transport of contamination and the 

impact on the groundwater environment and the affected communities. 

 
2) Consultants can make much more effective use of the subsurface data, design better 

monitoring network to collect additional data, and characterize more accurately 
contamination site dynamics at much less cost. They also can more easily communicate a 

solution, a design, or strategy to their clients; 

 

3) The local community could visualize the invisible subsurface and experience and 

understand the impact of a proposed management and cleanup schemes and pollution 

control measures in an intuitive, vivid, and interactive way. They can also visualize the 

potential impact of their own activities on the groundwater environment and their 

drinking water supply. Thus, they are motivated and empowered to engage in the intricate 

process of community-based environmental management, planning, protection, and 

cleanup. 

 

4) Policymakers and politicians can use real-time interactive simulation as a public relations 
effort to reveal future environmental plans related to groundwater resources management 

and remediation. 

 

Coupled with the information explosion and the widespread popularity of computers, IGW 3 

stands to dramatically improve the public involvement in groundwater protection where the 

'public' is a major stakeholder.  

 

EDUCATION 

The innovative software technology also provides a unique tool for training and education. It 

provides an environment for active student learning and exploration, learning by doing, by solving 

problems, by engaging in authentic investigations. The software makes it possible to introduce 

research and complex problem solving into the classroom in a substantial way and on a routine 

basis.  

 

IGW 3 provides the first systematic environment of its kind for teaching groundwater flow and 

pollutant transport. Its unique capability of real-time interactive modeling, real-time visualization, 

real-time analysis, and real-time presentation makes it ideal for teaching and learning in the 
classroom. It is particularly effective for implementing hands on, interactive, and problem and 

project based learning in an action-oriented and student centered curriculum. The software can be 

used as an interactive electronic “chalkboard” for professors to teach and demonstrate live 

groundwater flow and contaminant transport, contaminated site characterization and remediation 

design using vivid real-time simulations. It can also be used as an interactive “notepad” or a 

virtual testing ground for students to engage in active exploration and collaborative investigation 

under realistic conditions.  
 

ACTIVE LEARNING  

In particular, IGW 3 allows a student to interact with and instantly visualize aquifer flow, 

well dynamics, groundwater and surface water connections, contaminant advection, 

diffusion, dispersion, sorption, retardation, and decay under different geological, 

hydrological, hydraulic, and chemical conditions interactively and graphically specified 

by students. The software can be used to vividly illustrate and investigate the effect of 

natural variability, the interaction of different scales of heterogeneities, the interactions 

among geological, chemical, and hydrological heterogeneity on flow and pollutant 
migration, and how these heterogeneities and their interactions may significantly 

complicate groundwater remediation. The software also provides an interactive 

environment for students to perform statistical data analysis, site characterization, 

geological mapping, pump test analysis and design, well capture zone design, wellhead 

protection area delineation, monitoring network and remediation extraction system design 

under meaningful conditions.  
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Additionally, the software environment can be used to teach computational mathematics 

and statistical and probabilistic methods in water resources and environmental 

engineering.  Within the new interactive environment, mathematics becomes concrete 

and differential equations meaningful. Students can interact and experiment hands-on 
with the model solvers, algorithms, and solution techniques for a concrete and physically 

meaningful situation and instantly visualize their practical implications (e.g., the impact 

of solver selection on the rate of the predicted plume spreading).  Students can visualize 

on-line the process of matrix solution and iterations of nonlinear differential equations. 

They can compare different methods for solving sparse matrix systems and different 

discretization schemes for approximating elliptic, hyperbolic, and parabolic partial 

differential equations. They can visually observe the effect of grid spacing and time steps 

on the solution accuracy and the effect of numerical dispersion and spurious oscillations. 

Students can also interactively learn, investigate and visualize statistics and probability 

and conditional probability within a meaningful engineering context. They can interact 

with and visualize the techniques of numerical integration (particle tracking), spatial 

interpolation, statistical regression and interpolation, spatial data analysis, histogram and 
correlation and variogram modeling, random field generation, conditional geostatistical 

simulation, Monte Carlo simulation, and conditional Monte Carlo simulation. 

 

COLLABORATIVE LEARNING 

IGW 3 is a collaborative work platform. By providing instantaneous feedback, and 

making a student’s thinking explicit, visible, and understandable to all in a naturally 

expressive manner, the software is ideal for effective interdisciplinary interactions, 

collaborative learning, communication, for involving others with different skills and 

cultural backgrounds in sharing information, brainstorming, and developing ideas. 

 

The computer screen can be treated as virtual experimental field site or ‘testing ground’.  
The classroom becomes a knowledge-building learning community.  Acting as 

investigators and working in teams, students confront tangible practical problems - e.g., 

cleaning up an accidental spill, evaluating the environmental impact of a landfill, 

developing a wellhead protection program for a municipal well field, conducting a 

remedial and feasibility study for a hazardous waste site, or providing expert testimony in 

a legal dispute.  Students learn by conducting guided site investigations and solving 

authentic problems.   

 

Working in groups, they discuss the monitoring issues, report back, present findings, 

challenge and debate each other, explain their points of view, and search for cleanup 

strategies that build on the strengths of all the group members.  In this setting, the 

instructor becomes a mentor, a facilitator, a co-learner, and a co-investigator with the 
student. The instructor moves among groups, directing students' discussions and energies 

when appropriate.  The instructor provides coaching and support.  At critical times the 

instructor teaches students the skills, strategies, and links they need to complete the tasks 

they define for themselves.  Rather than simply lecture, the instructor instead cultivates 

skills, focuses effort, fosters resourcefulness, and maintains an interactive climate of 

learning, exploration, and discovery. 

 

INDIVIDUALIZED LEARNING   

The interactive groundwater environment can also be used for students to conduct 

independent projects and facilitate independent and deep thinking and individualized 

learning. Students have different backgrounds, experiences, abilities, cultural origins, 
learning styles, family responsibilities and personalities. The software allows maximizing 

teaching and learning for all students by providing a platform for students to engage in 

independent site investigation.  Students may start an individual project in the classroom 

and finish the bulk of the investigation at home or wherever a computer is connected to 

the network.  In an independent project, a student works on a site by him/herself to 
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accomplish learning goals. Individual projects complement the collaborative and have 

many advantages.  They can: 

 

• take into account variations in student learning styles as well as ability, 

background and cultural origins; 

• allow students to go as far as they can at their own pace and at the place 

they choose; 

• provide variable time and flexible schedules that enhances quality and in-

depth study; 

• provide incentives for self-direction, self-motivation, and self-activity; 

• promote independent thinking and reduce reliance upon the instructor; and, 

• provide self-motivated learning that may continue throughout life: Slow 

students are seldom discouraged and the gifted are rarely bored 

 

The proposed curriculum innovation will provide leadership in engineering for utilizing 

technology and creating new models of learning and teaching environments. Educators 
who are eager to organize their classrooms so as to guarantee students the kind of quality 

education that will enable them to reach their full potential as learners and as human 

beings will find such an action-oriented and student-centered approach a practical and 

exciting direction in which to move. 

 

 

1.3  REFERENCE MANUAL INTRODUCTION 

 

This ‘Reference Manual’ is intended to give in-depth information concerning the IGW 3 solver 

techniques, applicable theory, and mathematical foundation. It describes the VF code only. 

Information concerning the VB programming techniques can be obtained by contacting Dr. Li or 

his associates. 

 
For information about the implementation of the software and examples of such implementation 

please consult the IGW 3 User’s Manual and IGW 3 Tutorials documents. 

 

It should be noted that some details such as basic numerical methods and control volume 

formulation that are commonly encountered in the field of groundwater modeling have been 

omitted in the interest of succinctness.  Where information has been omitted, it will be noted and 

appropriate references identified. 
 

1.3.1 REFERENCE MANUAL UPDATES 

 
It is important to note that the IGW 3 software and the associated documents are undergoing 

constant revision.  Check the website (see Section 1.4) often for updates. 

 
1.3.2 REFERENCE MANUAL ACRONYMS / ABBREVIATIONS 
 

There are a great number of acronyms used throughout this text.  The acronyms, their meanings, 
and the section in which they are discussed are presented in Table 1.3.2-1. 

 

 

 

 

 
TABLE 1.3.2-1 
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Reference Manual acronyms 

ACRONYM 

/ ABBREV. 
DEFINITION REFERENCE 

IGW Interactive Groundwater Modeling - 

VF Visual Fortran Section 1.2.1 

DLL Dynamically Linked Library Section 1.2.1 

VB Visual Basic Section 1.2.1 

VTK Visual Tool Kit Section 1.2.2 

FD Finite Difference Section 2.1 

CV Control Volume Section 2.3.1.1 

RCVT Rotational Control Volume Technique Section 2.3.2 

FIFD Fully Implicit Finite Difference Section 3.2 

MMOC Modified Method of Characteristics Section 3.2 

RW Random Walk Section 3.2 

MC Monte Carlo Chapter 4 

FFT Fast Fourier Transform Section 4.1 

PDF Probability Density Function Section 4.3 

CDF Cumulative Density Function Section 4.3 

IDW Inverse Distance Weighting Section 6.1 

SOR Successive Over Relaxation Chapter 10 

 

 

1.4  ADDITIONAL INFORMATION 

 

Additional information concerning IGW 3 can be obtained from the IGW website: 

 

http://www.egr.msu.edu/~lishug/research/igw/index.htm 

 

The site contains links for (among other things): 

 

• exploring the capabilities and algorithms associated with the software, 

• viewing software demonstrations and associated presentations, 

• downloading verification papers, 

• obtaining software documentation, 

• downloading the software, 

• providing feedback, 

• accessing the IGW Forum, 

• contacting Dr. Li and his associates, and 

• acknowledgements and team members. 
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CHAPTER 2: FLOW SOLVER 
 

The flow solver is the backbone of the IGW 3 software and therefore is discussed first.  The following 

sections discuss various components and features of the flow solver. 

 

 

2.1  GRID LAYOUT 

 

The IGW 3 finite difference (FD) technique employs a grid that is uniform along each axis.  In 

other words, the grid spacing along the x-axis is constant and the grid spacing along the y-axis is 

constant, but the two spacings may not necessarily be equivalent to each other.    With future 
software improvements in mind, the code has been written in a very general format that allows for 

non-uniform grid spacing along each axis (although, as stated previously, the currently 

implemented technique allows for uniform grid spacing only). 

 

Figure 2.1-1 shows a conceptual example of the IGW 3 grid and lists associated parameters. 

 

  
FIGURE 2.1-1 
Conceptual example of the IGW 3 grid. 
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Figure 2.1-2 shows a single cell and the surrounding nodes and gives additional parameter 

notation. 

 

  
FIGURE 2.1-2 
Conceptual example of a single cell and the surrounding nodes. 

 

Table 2.1-1 lists parameters employed in the code and their associated code variables. 

 

TABLE 2.1-1 
Parameters and associated code words 

Parameter Notation in Figures 2.1-1 and 2.1-2 Code variable 

X-coordinate Xij Xmesh(I,J) 

Y-coordinate Yij Ymesh(I,J) 

X-direction grid spacing Xi HX(I) 

Y-direction grid spacing Yi HY(J) 

X-direction control volume spacing Xs DXS(I) 

Y-direction control volume spacing Ys DYS(J) 

 

 

The user-defined grid spacing determines (through IGW 3 internal calculations) the number and 

location of the nodes and the size and shape of the associated cells.   Spatial parameters are 

associated with the nodes and the value that exists at a certain node is applicable for the entire area 

of the cell. 
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The grid is set up over the entire Working Area (refer to IGW 3 User’s Manual).  The nodes that 

do not fall within any user-defined feature are referred to as inactive.  These cells have zero values 

for every parameter and although the solver considers them in the solution, they do not affect the 

modeling output.  The inactive cells essentially form a no-flow boundary around the user-defined 

computational domain. 
 

 

2.2  GOVERNING EQUATION 

 
The partial differential equation describing flow in porous medial is usually written as 
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where Ss = the specific storage of the aquifer materials [L-1], 

            h = the hydraulic head [L], 

          Kij = the hydraulic conductivity tensor [L/T] 

           Xi = the Cartesian coordinate [L], and 

            qs = the source/sink term [T-1]. 

 

 The depth-averaged form of the equation (where depth is b) can be presented as 
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where S = Ssb = the storage coefficient [-], 

         Tij = Kijb = the transmissivity tensor [L2/T], and 

         Qs = qsb = the source/sink term [L/T]. 

 

Equation 2.2-2 is the form that is employed in the IGW 3 flow solver.  The user inputs the first 

principal hydraulic conductivity (Kii), the anisotropy ratio (Kii/Kjj), and the slope angle ().  Kjj 
is determined from the first principal hydraulic conductivity and the anisotropy ratio.  The four 

hydraulic conductivity tensors (with respect to the global model coordinate system) are determined 

from the principal hydraulic conductivities and slope angle through 
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The transmissivities used in Equation 2.1-2 are based on the hydraulic conductivities calculated 

from Equations 2.2-3 – 2.2-5. 

 
Note that a harmonic mean method was used to evaluate K values at the cell faces e, w, n and s.   
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2.3  DISCRETIZATION OF THE GOVERNING EQUATION 

 

As the above equations indicate, the hydraulic conductivity tensor will have four terms.  While 

most existing flow models ignore the cross terms (Kij and Kji) by assuming that the principal 

components (Kii and Kjj) are aligned with the x- and y-coordinate axes, IGW 3 incorporates them 

into the solution.  The reason that some models ignore them is that when they are considered in a 

traditional FD scheme, some correlation coefficients in the FD equation are negative and thus 
imply an inverse relationship between the head in the cell of interest and the surrounding cells.  

This is not intuitive and is incorrect.  IGW 3 alleviates this problem by employing an improved 

FD scheme that involves a local rotation of the global coordinate system on a cell-by-cell basis.  

This approach allows all of the conductivity tensors to be considered in the model and thus 

provides for more accurate solutions. 

 

While the improved FD method approach is the default solver technique in IGW 3, a traditional 

FD method can be employed for comparison purposes.  The traditional FD method is presented in 

Section 2.3.1 while the improved approach is presented in Section 2.3.2. 

 

The mathematics in the following subsections are presented for an equivalent form of the 
governing equation (2.2-2) that takes into account the area of the cell 
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2.3.1 THE TRADITIONAL FD METHOD 
 

The following subsections present the steps and equations employed when the traditional FD 

method is implemented. 

 

2.3.1.1  APPROXIMATION OF SPATIAL TERMS 
 

Applying a control volume (CV) technique to each cell (refer to Figure 2.1-2 for 

reference), the spatial term on the right-hand side of Equation 2.1-2 can be approximated 

by 
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where Je, Jw, Jn, and Js are the fluxes through the east, west, north, and south faces, 

respectively and are defined as 
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and 
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where the superscripts on the transimissivity terms indicate the appropriate cell face. 

 

The non-nodal heads appearing in Equations 2.3.1.1-2 – 2.3.1.1-5, hne, hse, hnw, and hsw 

are evaluated in terms of the nodal heads using a simple four-point average scheme. 

 

Equations 2.3.1.1-1 – 2.3.1.1-5 are combined and simplified to  
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where the ai coefficients are referred to as the coefficients of the discretized matrix and 

are defined as 
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The coefficients of the discretized matrix are calculated by the source code subroutine 

COEFFLOW. This subroutine uses a derived type variable, CST2, to store the values.  

Table 2.3.1-1 lists the variable variants for each individual coefficient. 

 
TABLE 2.3.1-1 
The individual coefficient CST2 variable variants 

Coefficient Variable Variant 

aE CST2(I,J)%SE 

aW CST2(I,J)%SW 

aN CST2(I,J)%SN 

aS CST2(I,J)%SS 

aNE CST2(I,J)%SNE 

aNW CST2(I,J)%SNW 

aSE CST2(I,J)%SSE 

aSW CST2(I,J)%SSW 

aP CST2(I,J)%SP 

 
 
2.3.1.2 APPROXIMATION OF TIME DERIVATIVE TERM 
 
The time derivative term on the left-hand side of Equation 2.3-1 is: a) equal to zero if the 

model is being solved at steady state, or b) defined by 
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when the model is being solved for transient flow.  In Equation 2.3.1.2-1, the superscript 

on h indicates the time level, t is the time step, 
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2.3.1.3 APPROXIMATION OF SOURCE/SINK TERM 
 

The source/sink term can be expressed as 
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where aP
Q includes any head-dependent sources and sinks and Sf

Q includes any head-

independent sources and sinks. 
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Table 2.3.1.3-1 lists the types of sources and sinks available in IGW 3, their associated 

head-dependent and head-independent components, and any conditions that determine 

when the source/sink is active. 

 

TABLE 2.3.1.3-1 
Types of source/sinks in IGW 3 and associated properties 

Source/Sink Head Dependent 

Component 

Head Independent 

Component 

Condition 

Well 0 Qwell none 

Recharge 0 qXsYs none 

River 
LriverXsYs LriverXsYshriver h>Rbed 

0 LriverXsYs(hriver-Rbed) h<Rbed 

Drain LdrainXsYs LdrainXsYsDbed h>Dbed 

 

 

Table 2.3.1.3-2 lists the variables used in Table 2.3.1.3-1, their definitions, and 

associated dimensions.  Note that the values of these variables are set in IGW 3 through 

user input. 

 

TABLE 2.3.1.3-2 
Variables used in Table 2.3.1.3-1 

Variables Definition Dimensions 

Qwell well flow rate L3/T 

q recharge rate L/T 

Lriver river leakance T-1 

Ldrain drain leakance T-1 

hriver river stage L 

Rbed elevation of river bed L 

Dbed elevation of drain invert L 

 

 

This process is implemented in subroutines ADDQS1 (for head independent) and 

ADDQS2 (for head dependent) in the source code. 

 

2.3.1.4 COEFFICIENT MATRIX ASSEMBLY 
 

When Equations 2.3.1.1-6, 2.3.1.2-1, and 2.3.1.3-1 are substituted into Equation 2.3-1 

the result is 
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2.3.1.5 MATRIX SOLUTION 
 
A matrix solver is required to obtain a solution to Equation 2.3.1.4-1.  Refer to Chapter 

10 for a discussion of the available solver methods. 

 

2.3.2 THE IMPROVED FD METHOD 
 

The improved FD method employed in IGW 3 is also referred to as the rotational CV technique 

(RCVT).  Basically, the RCVT rotates the X-Y coordinate system by  to adapt to the preferential 

flow direction.  The new coordinate system is referred to as the XL-YL coordinate system and 

provides the basis for a rotated CV and associated numerical equation.  It is important to note that 
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the size of the CV changes with respect to the magnitude of .  Figure 2.3.2-1 illustrates the 

RCVT concept. 

 

 
FIGURE 2.3.2-1 
The RCVT concept 
 
The following subsections present the steps and equations employed when the improved FD 

method is implemented. 

 

2.3.2.1  APPROXIMATION OF SPATIAL TERMS 
 

Applying the RCVT to each cell (refer to Figure 2.3.2-1 for reference), the spatial term 

on the right-hand side of Equation 2.3-1 can be approximated by 
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where Je, Jw, Jn, and Js are the fluxes through the east, west, north, and south faces (after 

the rotation), respectively, and are defined as 
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and Sn, Ss, Se, and Sw represent the distance between the cell center and the trans-

nodal reference points RN, RS, RE, and RW, respectively. 

 

The prime notation on the transmissivity terms (Equations 2.3.2.1-2 – 2.3.2.1-5) 

indicates that they are the principal components of the transmissivity tensor.  Please note 

the following notation equivalencies: 
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The heads at the trans-nodal reference points hRE, hRW, hRN, and hRS are evaluated in terms 

of the nodal values through a simple linear interpolation scheme that has the general form 
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where 1 and 2 are nodal quantities and  and  are line element shape functions.  

Figure 2.3.2.1-1 illustrates the shape function concept. 

 

 
FIGURE 2.3.2.1-1 
An illustration of the shape function concept.  Points 1 and 2 represent nodes, L represents the distance 

between the nodes, and x represents the distance from node 1 to the trans-nodal point. 
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It should be noted that based on the slope angle, the trans-nodal points will be associated 

with a different set of nodes from which the associated head will be determined.  The 

general formulation for this relationship is expressed through 
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and    
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where i
j are shape functions (where i= E, W, N, S, NE, SE, SW, and NW; j = E, W, N, and 

S) with the properties that: 1) six of them will be zero for any given index j, 2) the 

remaining two for a given index j will be positive, and 3) the sum of each for a given 
index i is unity. 

 

Table 2.3.2.1-1 shows list of the shape functions and the associated source code variable. 

 

TABLE 2.3.2.1-1 
A list of shape functions and associated source code variables 

Shape function Source code variable 

E WPLT(4) 

W WPLT(8) 

N WPLT(6) 

S WPLT(2) 

NE WPLT(5) 

SE WPLT(3) 

SW WPLT(1) 

NW WPLT(7) 

 

 

Equations 2.3.2.1-1 – 2.3.2.1-10 are combined to yield 
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Note that this equation is of the same form as Equation 2.3.1.1-6 but in this case the 

coefficients are defined as 
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and      
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where j = E, W, N, or S. 

 

The implementation of this process was done in the source code subroutine 

NEWCOEFFLOW.  The same derived variable (CST2) that was employed in the 

traditional FD approach is employed here to store the coefficient values.  Refer to the end 

of Section 2.3.1.1 for more details. 
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2.3.2.2 APPROXIMATION OF TIME DERIVATIVE TERM 

 
The time derivative term on the left-hand side of Equation 2.3-1 is: a) equal to zero if the 

model is being solved at steady state, or b) defined by 
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where 
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2.3.2.3 APPROXIMATION OF SOURCE/SINK TERM 

 
The source/sink term can be expressed as 

 

         
Q
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Q

Psss ShaYXQ +=                       (2.3.2.3-1) 

 

where aP
Q includes any head-dependent sources and sinks and Sf

Q includes any head-

independent sources and sinks. 

 

Table 2.3.2.3-1 lists the types of sources and sinks available in IGW 3, their associated 

head-dependent and head-independent components, and any conditions that determine 

when the source/sink is active. 
 

TABLE 2.3.2.3-1 
Types of source/sinks in IGW 3 and associated properties 

Source/

Sink 

Head Dependent 

Component 

Head Independent Component Con-

dition 

Well 0 Qwell none 

Re-

charge 0 
22

snwe SSSS
q

++  none 

River 

river
snwe L

SSSS

22

++  
riverriver

snwe hL
SSSS

22

++
 h>Rbed 

0 )(
22

bedriverriver

snwe RhL
SSSS

−
++  h<Rbed 

Drain 
drain

snwe L
SSSS

22

++  
beddrain

snwe DL
SSSS

22

++  h>Dbed 

 

 

Table 2.3.2.3-2 lists the variables used in Table 2.3.2.3-1, their definitions, and 

associated dimensions.  Note that the values of these variables are set in IGW 3 through 
user input. 

 



 

25 

TABLE 2.3.2.3-2 
Variables used in Table 2.3.1.3.1 

Variables Definition Dimensions 

Qwell well flow rate L3/T 

q recharge rate L/T 

Lriver river leakance T-1 

Ldrain drain leakance T-1 

hriver river stage L 

Rbed elevation of river bed L 

Dbed elevation of drain invert L 

 

 

This process is implemented in subroutines ADDQS1 (for head independent components) 

and ADDQS2 (for head dependent components) in the source code.  Note that these are 

the same subroutines associated with the traditional FD method.  The only difference is in 

the areas associated with each cell. 

 

2.3.2.4 COEFFICIENT MATRIX ASSEMBLY 
 

When Equations 2.3.2.1-11, 2.3.2.2-1, and 2.3.2.3-1 are substituted into Equation 2.3-1 

the result is 
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This equation has the same form as Equation 2.3.1.4-1 but the coefficients are different 

when the slope angle is not equal to zero. 

 

2.3.2.5 MATRIX SOLUTION 
 

A matrix solver is required to obtain a solution to Equation 2.3.2.4-1.  Refer to Chapter 

10 for a discussion of the available solver methods. 

 

 

2.4  VELOCITY CALCULATION 

 

Once the head values have been solved for, the seepage velocities are calculated by 
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where ne is the effective porosity of the porous medium. 

 

The velocities are calculated at the cell faces using the appropriately determined K values (see the 

end of Section 2.2) and head gradients (obtained from a central difference scheme).  A simple 

arithmetic mean is used to determine the nodal velocities from the cell face velocities.  In future 

versions of IGW 3, non-uniform grids may be present and the arithmetic mean calculation will be 
replaced with a linear interpolation technique. 

 

The velocity calculation functions are coded in subroutine CALUVXJQT. 
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2.5  ADDITIONAL SOLVER INFORMATION 

 

This section presents some additional information about the IGW flow solver techniques. 

 

2.5.1 SLOPE ANGLE SPECIFICATIONS 
 
For any node that is adjacent to an inactive cell (refer to Appendix A in the IGW 3 User’s 

Manual), the anisotropy orientation, or slope, angle is set to zero.  In IGW 3, inactive cells are not 

allowed to have any flux through their boundaries.  In essence, this means that the associated 

coefficient that corresponds to the interface between the active and inactive cell should be zero.  

However, the no flow boundary condition is set in IGW 3 by setting Kii = 0.  If there exists a non-

zero slope angle, the associated Kij terms, which also affect the magnitude of the coefficient, will 

be non-zero and subsequently lead to a non-zero coefficient.  Thus the slope needs to be set to zero 

in these cases to avoid the scenario in which a cell is set to a no-flow boundary but water still 

‘leaks’ into it from an adjacent cell or cells. 

 

2.5.2 INNER ITERATIONS 
 

An additional water table iteration (also referred to as ‘inner’ iteration) must be performed for 

every flow, or outer, iteration when the model involves an unconfined aquifer.  This inner iteration 

scheme is implemented in the VB interface code. 

 

Also part of the inner loop: 1) a non-linear iteration technique that accounts for any head 

dependent source/sinks, and 2) the scheme for classifying cells as ‘dry’ or ‘wet’ (refer to 

Appendix A in the IGW 3 User’s Manual). 

 

 

2.6  FLOW SOLVER FLOW CHART 

 
Figure 2.6-1 shows a flow chart that lists the steps involved in the IGW 3 flow solver procedure.  
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FIGURE 2.6-1 
Flow chart for the IGW 3 flow solver 
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CHAPTER 3: TRANSPORT SOLVER 
 

The transport solver is discussed in this chapter.  The following sections discuss various components and 

features of the transport solver. 

 

 

3.1  GOVERNING EQUATION 

 

The partial differential equation describing 2-D solute transport in porous media can be written as 
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where C = the solute concentration [M/L3], 

           B = the aquifer thickness [L], 

          ne = the effective porosity [-], 

                         ui = seepage or averaged pore velocity in the Xi direction [L/T], 
                        Dij = the dispersion coefficient tensor [L2/T], 

                        Xi = the Cartesian coordinate [L], 

                       C* = the concentration of solute species adsorbed to solids [M/M], 

                        b = the bulk density of the solids [M/L3], 

                          = the decay coefficient [T-1], 

                        qs = the volume flow rate per unit area of the source or sink [L/T], and 

                        Cs = the solute concentration in the source or sink fluid [M/L3]. 

 

Consider 

 

CKC d=*
       (3.1-2) 

 

where Kd = the distribution coefficient [L3/M].   

 

Note that this relationship is based on the assumption that the adsorption isotherm can be 

described with a linear and reversible equation. 

 

If Equation 3.1-2 is substituted into Equation 3.1-1 the result is 
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or 
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where Rd is the retardation factor and is defined in the relationship 
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Equation 3.1-4 is the form that is employed in the IGW 3 flow solver.  In comparison to most 

texts, this form of the equation incorporates an extra term that contains (B/t) to address the 

unconfined aquifer case. 

 

The hydrodynamic dispersion tensor for isotropic porous media is defined through the components 
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and    
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where L = the longitudinal dispersivity [L], 

                         T = the transverse dispersivity [L], and 

                        D* = the effective molecular diffusion coefficient [L2/T]. 

 

 

3.2  DISCRETIZATION OF THE GOVERNING EQUATION 

 

IGW 3 incorporates three different methods for discretizing Equation 3.1-3 or 3.1-4.  These 

methods include: 1) a fully implicit finite difference method (FIFD), 2) the modified method of 
characteristics (MMOC), and 3) the random walk method (RW).  The user may choose between 

the MMOC and the RW method as the primary transport solver.  The FIFD will be applied to cells 

that contain wells when the MMOC is selected.  This is because the MMOC relies on particle 

tracking to approximate the advection term of the governing equation and particle tracking is not 

available in these cells due to the lack of a unique characteristic curve at a well node.   

 

The various methods are discussed in the following subsections. 

 

3.2.1 FULLY IMPLICIT FINITE DIFFERENCE MEHTOD 
 
The FIFD method discretizes Equation 3.1-3.  In the software discretization scheme, each term in 

the equation is multiplied by XsYs to take into account the area of each term.  

 

The steps involved are discussed in the following subsections. 

 

3.2.1.1 APPROXIMATION OF ADVECTION TERM 
 

The advection term can be broken down into its x- and y-direction components, where 
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This relationship can be cast in the form 
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where the solute fluxes are defined by 

 

eee qCF =  ,              (3.2.1.1-3) 

 

www qCF =  ,              (3.2.1.1-4) 

 

nnne qCF =  ,                        (3.2.1.1-5) 

 

and   

 

sss qCF = ,              (3.2.1.1-6) 

 

and where the subscripts on the terms indicate the values are those at the respective cell 
face. 

 

The non-nodal Ce, Cw, Cn, and Cs are evaluated in terms of the nodal values using a 

simple upwind scheme where the cell-face concentration between two neighboring nodes 

in a particular direction is equal to the concentration at the upstream node along the same 

direction.  In equation form, 
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Note that the IGW 3 convention for flux direction is “+” for flux into the cell and “-” for 

flux leaving the cell.  
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Substituting Equations 3.2.1.1-3 – 3.2.1.1-10 into Equation 3.2.1.1-2 yields 
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where 
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The four cell-face flux values (qe, qw, qn, and qs) are stored in the FLUX(Nwell,4) array 

and calculated by source code subroutine LHSWELL.  The entire process is controlled by 

subroutine FDCOEF. 

 

3.2.1.2 APPROXIMATION OF DIFFUSION TERM 
 

The user has the option of applying either the traditional CV technique or the RCVT (see 

Section 2.3.2 for more information) to approximate the diffusion term.  They are both 

presented in this section. 

 

TRADITIONAL CV TECHNIQUE 

Applying the traditional CV technique to each cell (refer to Figure 2.1-2 for reference), 

the diffusion term on the right-hand side of Equation 3.1-3 can be approximated by 
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where Je, Jw, Jn, and Js are the fluxes through the east, west, north, and south faces, 

respectively, and are defined as 
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where the superscripts on the dispersion terms indicate the appropriate cell face. 

 

The non-nodal heads appearing in Equations 2.3.1.1-2 - 2.3.1.1-5, Cne, Cse, Cnw, and Csw 

are evaluated in terms of the nodal heads using a simple four-point average scheme. 

 

Equations 3.2.1.2-1 - 3.2.1.2-5 are combined and simplified to  

 

P

Diff

SW

Diff

SE

Diff

NW

Diff

NE

Diff

S

Diff

N

Diff

W

Diff

E

Diff

Ess

j

ije

i

CaCaCa

CaCaCa

CaCaCaYX
X

C
BDn

X

PSWSE

NWNES

NW

−++

+++

++=






















      (3.2.1.2-6) 

 

where the ai
Diff coefficients are referred to as the coefficients of the discretized matrix and 

are defined as 
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The coefficients of the discretized matrix are calculated by the source code subroutine 

OLDCOEFTRSP. This subroutine uses a derived type variable, CST1, to store the values.  

Table 3.2.1.2-1 lists the variable variants for each individual coefficient. 

 
TABLE 3.2.1.2-1 
The individual coefficient CST1 variable variants 

Coefficient Variable Variant 

aE
Diff CST1(I,J)%SE 

aW
Diff CST1(I,J)%SW 

aN
Diff CST1(I,J)%SN 

aS
Diff CST1(I,J)%SS 

aNE
Diff CST1(I,J)%SNE 

aNW
Diff CST1(I,J)%SNW 

aSE
Diff CST1(I,J)%SSE 

aSW
Diff CST1(I,J)%SSW 

aP
Diff CST1(I,J)%SP 

 

 

RCVT 

Applying the RCVT (refer to Section 2.3.2 for more information) to each cell (refer to 

Figure 2.3.2-1 for reference), the spatial term on the right-hand side of Equation 3.1-3 

can be approximated by 
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where Je, Jw, Jn, and Js are the fluxes through the east, west, north, and south faces (after 

the rotation), respectively, and are defined as 
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and Sn, Ss, Se, and Sw represent the distance between the cell center and the trans-

nodal reference points RN, RS, RE, and RW, respectively. 

 

The prime notation on the dispersion variables (in Equations 3.2.1.2-17 – 3.2.1.2-20) 

indicates that they are the principal components of the dispersion tensor.  These are 

defined as 
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The concentrations at the trans-nodal reference points CRE, CRW, CRN, and CRS are 

evaluated in terms of the nodal values through a simple linear interpolation scheme that is 

described in Section 2.3.2.1 (reference to Equation 2.3.2.1-6 and Figure 2.3.2.1-1). 

 

The general formulation for this relationship is expressed through 
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Equations 3.2.1.2-16 – 3.2.1.2-26 are combined to yield 
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The coefficients are defined as 
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where j = E, W, N, or S. 

 

The implementation of this process was done in the source code subroutine 

NEWCOEFTRSP.  The same derived variable (CST1) that was employed in the 
traditional FD approach is employed here to store the coefficient values.  Refer to the end 

of Section 2.3.1.1 for more details. 

 

3.2.1.3 APPROXIMATION OF TIME DERIVATIVE TERM 
 

The time derivative term on the left-hand side of Equation 3.1-3 is: a) equal to zero if the 

model is being solved at steady state, or b) defined by 
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when the model is being solved for transient flow.  In Equation 3.2.1.3-1, the superscript 

on C indicates the time level, t is the time step, 
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When the RCVT is implemented, the following substitution occurs 
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3.2.1.4 APPROXIMATION OF SOURCE/SINK TERM 
 

The source/sink term represents the solute mass entering the model domain through the 

source or leaving the model domain through the sink.  For sources, the concentration is 
specified by the user; for sinks it is equal to the concentration in the groundwater near the 

sink location.  This term can be expressed as 
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and 
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Note that qs is the contribution of all source/sink terms.  The individual terms are stored 

in the QT(I,J) array in the source code and the calculation of qs is performed in subroutine 

QTOTAL. 

 

When the RCVT is implemented, the substitution in Equation 3.2.1.3-4 occurs. 

 

3.2.1.5 APPROXIMATION OF DECAY TERM 
 

The decay term in Equation 3.1-3 can be approximated by 

 

           
P

D

Psse CaYXBCn =−             (3.2.1.5-1) 

 

where 

 

           Bna eP =              (3.2.1.5-2) 

 

Note that λ is user defined through the VB interface and is assumed to be a nodal value.   

 

When the RCVT is implemented, the substitution in Equation 3.2.1.3-4 occurs. 

 

3.2.1.6 COEFFICIENT MATRIX ASSEMBLY  
 

Equations 3.2.1.1-11, 3.2.1.2-15 or 3.2.1.2-28, 3.2.1.3-1, 3.2.1.4-1, and 3.2.1.5-1 are 

substituted into Equation 3.1-3 yielding  
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where 
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3.2.1.7 MATRIX SOLUTION  

 
A matrix solver is required to obtain a solution to Equation 3.2.1.6-1.  Refer to Chapter 

10 for a discussion of the available solver methods. 
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3.2.2 MMOC 
 

Equation 3.1-4 is a Eulerian expression in which tC  / represents the rate of change of solute 

concentration at a fixed point in space.  The Lagrangian form of the equation is 
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where the substantial derivative, DtDC / , is defined by 
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and represents the rate of change of solute concentration along the path line of a contaminant 

particle. 

 

Note that 
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and is the retarded velocity of the contaminant particle. 

 
Using the FD method to approximate the substantial derivative yields  
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where CP
n+1 = the average solute concentration for cell P at the time level n+1, and  

     CP
n* = the average solute concentration for cell P at time level n+1 due to advection alone 

(n*
 refers to the intermediate time level). 

 

This substitution is addressed in Section 3.2.2.4. 

 

In the software discretization scheme, each term in Equation 3.2.2-1 is multiplied by XsYs to 

take into account the area of each cell.  When the RCVT is implemented, the substitution in 
Equation 3.2.1.3-4 occurs. 

 

3.2.2.1 PARTICLE TRACKING TECHNIQUE 
 

The MMOC employs the fourth-order Runge-Kutta method for particle tracking.  This 

technique involves calculating 4 different velocities along the particles path (at the initial 

position, at 2 midpoint positions, and at the final position) and then using a weighted 

average of the four as the velocity in the tracking calculation.  This process is 

summarized by 
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Because the technique requires velocities from non-nodal locations, a simple bilinear 

interpolation scheme has been employed to determine these velocities.  The general form 

is given as 

 

),(),(),(),(),( 44332211  uuuuu +++=      (3.2.2.1-11) 

 

where ui are nodal quantities, i are shape functions defined by 
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and 

 

b

YY C−
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a, b and the other terms are shown in the conceptual representation of the bilinear 

interpolation scheme given in Figure 3.2.2.1-1. 

 

The bilinear interpolation scheme is coded in subroutine PTLINEAR; the Runge-Kutta 

method in subroutine FORWARDTK0. 

 

 
FIGURE 3.2.2.1-1 
Conceptual representation of the bilinear interpolation scheme 

 

 

3.2.2.2 DETERMINATION OF CP
n* 

 

In determining CP
n*, the MMOC involves placing one fictitious particle at each node for 

the time level n +1.  Using a backwards particle tracking technique, the position for each 
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particle at time level n is determined and the concentration at that position is determined.  

This concentration is then assigned to CP
n*.  In mathematical form 

 

),(*

PP

nn

P YXCC =              (3.2.2.2-1) 

 

where (XP, YP) is the n time level coordinate for a particle that is at location P at time 
level n+1 and tracked backwards over the time step Δt (this location is denoted p).  Refer 

to Figure 3.2.2.2-1 for a conceptual representation. 

 

 
FIGURE 3.2.2.2-1 
Conceptual representation of MMOC particle movement 
 

 

Bilinear interpolation is used to calculate the concentration for the old time level.  This 

technique is described in Section 3.2.2.1. 

 

3.2.2.3 APPROXIMATION OF DIFFUSION TERM 
 

The diffusion term approximation in the MMOC takes a similar form as that for the FIFD 

method (refer to Section 3.2.1.2).  The approximating equation is 
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The coefficients for the two different solver methods are presented below. 

  

TRADITIONAL CV METHOD 

The coefficients corresponding to the traditional CV method are defined as 
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RCVT 

The coefficients corresponding to the RCVT method are defined as 

 

           


+
=

j

j

E

e

xx

e

sn
e

de

Diff aD
S

SS
Bn

BRn
a

E 2

1
,          (3.2.2.3-11) 

 

          


+
=

j

j

W

w

xx

w

sn
e

de

Diff aD
S

SS
Bn

BRn
a

W 2

1
,          (3.2.2.3-12) 

 

          


+
=

j

j

N

n

yy

n

we
e

de

Diff aD
S

SS
Bn

BRn
a

N 2

1
,          (3.2.2.3-13) 

 



 

43 

          


+
=

j

j

S

s

yy

s

we
e

de

Diff aD
S

SS
Bn

BRn
a

S 2

1
,          (3.2.2.3-14) 

 

  




































+
+




+
+




+
+




+

=

S

NE

s

yy

s

we
e

N

NE

n

yy

n

we
e

W

NE

w

xx

w

sn
e

E

NE

e

xx

e

sn
e

de

NE

D
S

SS
Bn

D
S

SS
Bn

D
S

SS
Bn

D
S

SS
Bn

BRn
a









2

2

2

2

1
,                  (3.2.2.3-15) 

 

   




































+
+




+
+




+
+




+

=

S

NW

s

yy

s

we
e

N

NW

n

yy

n

we
e

W

NW

w

xx

w

sn
e

E

NW

e

xx

e

sn
e

de

NW

D
S

SS
Bn

D
S

SS
Bn

D
S

SS
Bn

D
S

SS
Bn

BRn
a









2

2

2

2

1
,                (3.2.2.3-16) 

 

      




































+
+




+
+




+
+




+

=

S

SE

s

yy

s

we
e

N

SE

n

yy

n

we
e

W

SE

w

xx

w

sn
e

E

SE

e

xx

e

sn
e

de

SE

D
S

SS
Bn

D
S

SS
Bn

D
S

SS
Bn

D
S

SS
Bn

BRn
a









2

2

2

2

1
,                 (3.2.2.3-17) 

 

              




































+
+




+
+




+
+




+

=

S

SW

s

yy

s

we
e

N

SW

n

yy

n

we
e

W

SW

w

xx

w

sn
e

E

SW

e

xx

e

sn
e

de

SW

D
S

SS
Bn

D
S

SS
Bn

D
S

SS
Bn

D
S

SS
Bn

BRn
a









2

2

2

2

1
,                  (3.2.2.3-18) 



 

44 

and 
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where j = E, W, N, or S. 

 

3.2.2.4 APPROXIMATION OF TIME DERIVATIVE TERM 
 

The time derivative term is defined by 
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In Equation 3.2.2.4-1, the superscript on C indicates the time level, t is the time step, 
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When the RCVT is implemented, the substitution in Equation 3.2.1.3-4 occurs. 

 

3.2.2.5 APPROXIMATION OF SOURCE/SINK TERM 
 

The source/sink term is approximated in a similar fashion as employed in the FIFD 

method.  This term can be expressed as 
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where 
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When the RCVT is implemented, the substitution in Equation 3.2.1.3-4 occurs. 
 

3.2.2.6 APPROXIMATION OF DECAY TERM 
 

There are three decay terms that can, together, be approximated by 
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When the RCVT is implemented, the substitution in Equation 3.2.1.3-4 occurs. 
 

3.2.2.7 COEFFICIENT MATRIX ASSEMBLY AND SOLUTION 
 

Equations 3.2.2.3-1, 3.2.2.4-1, 3.2.2.5-1 and 3.2.2.6-1 are substituted into Equation 

3.2.2-1 yielding   
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where 
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and 
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Note that these equations are equivalent to those presented for the fully implicit finite 

difference method (3.2.1.6-1 – 3.2.1.6-6) but the coefficients are not equivalent. 

 

3.2.2.8 MATRIX SOLUTION 
 

A matrix solver is required to obtain a solution to Equation 3.2.2.7-1.  Refer to Chapter 

10 for a discussion of the available solver methods. 

   

3.2.3 RANDOM WALK 
 

The RW method treats the transport of solute mass by a large number of moving particles. 

 

The particle tracking techniques discussed in Section 3.3.1 have been used to approximate 

advection effects; an additional term is added in the RW formulation that takes into account 

dispersion effects by adding a random displacement to the particle after the advective motion has 

completed.  The governing equations for particle movement are 
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and 
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   (3.2.3-2) 

 

where the XP and YP terms indicate the particle coordinates and the superscripts on these terms 

indicate the time-step and the ΔX and ΔY terms indicate the displacements in one time-step and the 

subscripts indicate the mode of transport (‘ADV’ for advection and ‘Diff’ for dispersion).  Refer to 

Figure 3.2.3-1 for a conceptual representation. 

 

 
FIGURE 3.2.3-1 
Conceptual visualization of the RW method 

 

 

Note that the RW method was coded in subroutine TRACKFB_RW. 

 

3.2.3.1 DETERMINATION OF ADVECTIVE DISPLACEMENT 
 

The advective displacement is determined through a simple first-order Eulerian method 

that can be summarized through 
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and 
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where the u terms are the total velocities in the direction indicated by the subscript, the u 

terms are the seepage velocities in the direction indicated by the subscript, and the Δu 

terms are the velocity correction factors. 

 



 

47 

The velocity correction factors are the spatial derivatives of the dispersion coefficients 

and are defined as 
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Substituting Equation 3.2.3.1-3 and 3.2.3.1-4 into 3.2.3.1-1 and 3.2.3.1-2, respectively, 

and the result is multiplied by Δt, the advective displacements can be defined as 
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3.2.3.2 DETERMINATION OF RANDOM DISPLACEMENTS 
 

The random dispersive displacement term is comprised of both a longitudinal and 

transverse component.  These components are 
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where ZL and ZT are the random displacements in the longitudinal and transverse 

directions, respectively, tULL =  2  ,  tUTT =  2 , 
22
yuxuU += , 

tDD = *2 , and NL(0,1), NT(0,1) and ND(0,1) are normally distributed random 

numbers with a mean of zero and a standard deviation of one. 

 

In terms of the x- and y-directions, the random displacements can be expressed as 
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3.2.3.3 FINAL DISPLACEMENT 
 

Substituting Equations 3.2.3.1-5, 3.2.3.1-6, 3.2.3.2-3 and 3.2.3.2-4 into Equations 3.2.3-

1 and 3.2.3-2 the result is  

 

   

22

22

1

ADVADV

ADV
T

ADVADV

ADV
LADV

n

P

n

P

YX

Y
Z

YX

X
ZXXX

+


+

+


++=+

           (3.2.3.3-1) 

 

and 

 

   

22

22

1

ADVADV

ADV
T

ADVADV

ADV
LADV

n

P

n

P

YX

X
Z

YX

Y
ZYYY

+


−

+


++=+

 .          (3.2.3.3-2) 

 

3.2.3.4 EVALUATION OF CONCENTRATION 
 

The conversion of particle density to solute concentration is coded in the VB interface.  

This was done because the RW method can be visualized (which is done in the VB 

interface) as either a collection of particles or a concentration plume.  The conversion is 

performed by evaluating the concentrations at nodal points based on 

 

    









=


=

=

0if0

0if
1

*

m

m

NP

i

n

in

P

NP

NPC
C

m

                           (3.2.3.4-1) 

 

where NPm = the number of particles within cell P, and 

             Ci
n = the concentration of the ith particle at time level n. 

 

Refer to Figure 3.2.3.4-1 for an illustration. 
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FIGURE 3.2.3.4-1 
An illustration of particle movement and concentration evaluation in the RW method (note that this 

picture shows the overall particle path, not the component path as described above).  The open circles 

represent those particles within the cell; the open triangles represent those outside of the cell.  

 

 

3.3  ADDITIONAL INFORMATION 

 

Additional information concerning the transport flow solver is presented in this section. 

 

3.3.1 EULERIAN PARTICLE TRACKING 
 

In terms of single, non-MMOC related particle tracking, the particle tracking method employed is 

the first-order Eulerian technique (not the Runge-Kutta technique described in the Section 

3.2.2.2).  This process is described by 
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and 
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where the X and Y terms denote the particle coordinates at the time level indicated by the 

associated superscript and the ux and uy terms are the x- and y-direction velocities at Xn and Yn, 

respectively.  This method employs a uniform time step (Δt) for all particles and the bilinear 

interpolation method (see Section 3.2.2.1) for determining velocities that are non-nodal. 

 

 

3.4  TRANSPORT SOLVER FLOW CHART 

 

Figure 3.4-1 shows a flow chart that lists the steps involved in the IGW 3 transport solver 

procedure. 
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FIGURE 3.4-1 
Flow chart for the IGW 3 transport solver procedure 
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CHAPTER 4: MONTE CARLO SIMULATION 
 

A Monte Carlo (MC) simulation is one in which multiple statistically equivalent models are generated and 

solved and the results are statistically analyzed.  It is used to evaluate the impacts of uncertainties 

associated with model inputs on the calculated results.  The MC simulation scheme employed in IGW 3 

includes 3 parts: 1) generating random fields of model input parameters, 2) solving head and solute 

transport equations based on the generated fields, and 3) recursively calculating the statistical distributions 

of the output parameters.  The following sections describe these processes. 

 

 

4.1  RANDOM FIELD GENERATOR 

 

At the heart of the MC simulation method is the ability to generate multiple realizations of 

randomly variable input parameters.  Each variable parameter follows certain probabilistic model 

that is specified through a spectral density function or covariance function.   

 

IGW 3 employs the Fast Fourier Transform (FFT) technique to generate random fields.  It is 

described in the following subsection. 

 

4.1.1 FAST FOURIER TRANSFORM TECHNIQUE 
 

Given a zero-mean 2-D stochastic process, h(t1, t2), with a stationary covariance function 
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where h*(t1,t2) is the conjugate function of h(t1, t2), the spectrum of that stochastic process, S(f1,f2), 

can be expressed as the FFT of the covariance function where 
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and where the corresponding discrete FFT are 
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where N1 and N2 = the 2-D domain dimensions [L], 

            f = the frequency [L-1], 

            τ = the spatial quantity [L], and 

           Δ = the grid spacing [L]. 
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If hk is a stochastic process and its discrete FFT has the form 
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then Hn1
,n2

 are random.  Assuming 
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where H* is the conjugate function of H, one obtains from Equation 4.1.1-6 
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Comparing Equation 4.1.1-8 and 4.1.1-5 yields 
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Thus, generating a zero-mean stochastic process hk with a specific covariance structure is 

equivalent to the generating of a different stochastic process Hn1
,n2 in a frequency domain under 

the conditions 
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and θn1
,n2 are independent random variables uniformly distributed over [0,2π], then the conditions 

outlined above are met.  For the process to be real 
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which implies that 
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Thus, the major steps in generating a realization of a zero-mean stochastic process can be 

summarized as: 

 



 

53 

1) iH 000,0 +=  

 

2) iH
n
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3) 21
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

=  for 12/1 11 − Nn  and  

112/ 111 −+ NnN , and 12/1 22 − Nn , where 
21 ,nn  are independent 

random variables, uniformly distributed over [0, 2 ] 

 

4) 
221121 ,, * nNnNnn HH −−= , for 12/1 11 − Nn  and  112/ 111 −+ NnN , 

and 11 222 −+ NnN  

 

5) 21
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=  for n2=0 and  12/1 11 − Nn , and for n1=0 and 
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6) 2,1, 121
* nnNnn HH −= , for n2=0 and 112/ 111 −+ NnN  

 

7) 
22121 ,, * nNnnn HH −= , for n1=0 and 112/ 222 −+ NnN  

 

8) Generate 
21 ,kkh  by using the inverse FFT. 

 

The polygon based random field generator is contained in the source code in subroutine 

RANDOM_FIELD. 

 

 

4.2  SOLUTIONS 

 

The MC simulation process can be applied to any of the flow or transport solver methods 
discussed in the previous chapters except for the RW method of transport solvers. 

 

 

4.3  CALCULATING STATISTICAL DISTRIBUTIONS 

 

There are two main types of statistical distributions that are calculated by the IGW 3 MC 

simulator.  The first type is the point-based output statistics and includes: 1) the probability 

density function (PDF), 2) the cumulative density function (CDF), 3) the mean, 4) the median, 5) 

the mode, 6) the standard deviation, 7) the average deviation, 8) the skewness, and 9) the kurtosis.  

The second type is the recursively updated field-based output statistics and includes a variety of 

means, variances, and covariances. 

 

Note that IGW 3 currently supports the calculation of these statistics for conductivity, head, 
concentration, and polyline flux only. 

 

The two main types of statistical distributions are discussed in the following subsections. 
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4.3.1 POINT BASED STATISTICS 
 

The point-based statistics are based upon a set of values at a specific MC simulation.  For 

purposes of describing the point-based statistics, let the set be denoted x1, x2,…,xi,…xN.   
 

For the point-based statistics, the set of values is stored in array and then the statistics are 

calculated.  This process is coded in subroutine CALPDFCDF. 

 

The individual statistical parameters are discussed further. 

 

PDF 

The following steps outline the process IGW 3 uses to calculate the PDF: 

 

1) Define Xmax to be equal to MAX(x1, x2,…,xi,…xN) where the MAX function extracts the 

maximum value in the associated set; 

 
2) Define Xmin to be equal to MIN(x1, x2,…,xi,…xN) where the MIN function extracts the 

minimum value in the associated set; 

 

3) Calculate Δx as 
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 where M is the number of intervals (user specified); 

 

4) Sum the total number of data in each interval [xj,xj+1] where j=1,2,…M.  These values 

are assigned to nj.  Note that  
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5) Calculate the PDF as 
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CDF 
The CDF is derived from the PDF through 
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which is calculated in IGW 3 as 
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MEAN 

The mean is calculated as 
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MEDIAN 

The median of a probability distribution function p(x) is defined as 
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This implicit equation is solved iteratively to find Xmed, the value for which larger and smaller 

values of x are equally probable. 

 

MODE 
The mode of a probability distribution function p(x) is defined as 
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mod

)(     .   (4.3.1-8) 

 

This implicit equation is solved by finding the maximum value of p(xj) which gives Xmod = xj.  Xmod 

is the value of x where the probability distribution is at its maximum value. 

 

STANDARD DEVIATION 

The standard deviation is calculated by 
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AVERAGE DEVIATION 
The average deviation is calculated by  

 

       
=

−=
N

i

i Xx
N

ADev
1

1
 .            (4.3.1-10) 

 

SKEWNESS 

The skewness is calculated by 
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KURTOSIS 
The kurtosis is calculated by 
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4.3.2 FIELD BASED STATISTICS 
 

The field-based statistics are based upon a random field.  For purposes of describing the field-

based statistics, let the random field be denoted f(x,y). 
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For the field-based statistics, 
)(

00 ),('),('
k

yxgyxf (defined below) is stored in the COV() 

array.  The process of statistical calculations is coded in subroutine COVHC. 
 

The individual statistical parameters are discussed further. 

 

RECURSIVE MEAN 

The recursive mean is calculated by 
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where k is the realization index number.  The total number of realizations, Nk, is set by the user 

and can theoretically be infinity.  
 

RECURSIVE VARIANCE 

The recursive variance is calculated by 
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RECURSIVE COVARIANCE 

Considering a second random field, g(x,y), the covariance between point Pf(x,y) and Pg(x0,y0) is 

expressed as 
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If a point involved in the covariance calculation is non-nodal, then the bilinear interpolation 

scheme (refer to Section 3.2.2.1) is used to obtain ),(),,(),(),,( 0000 yxGyxgoryxFyxf . 

 

 

4.4  ADDITIONAL MONTE CARLO SIMULATION INFORMATION 

 

Some additional information about MC simulations is presented in the following subsections. 

 

4.4.1 COV ARRAY  
 

The COV array, which stores the 25 pair of covariances (based on log K, h, vx, vy, and C), is 
allocated as a dynamic array in the source code (these are only calculated when explicitly 

instructed to through the user input).  Storing values to or retrieving them from the array involves 

a very precise procedure that is implemented to save memory in part by reducing the interaction, 

or number of calls, to the array (in the VF code) by the VB code, and from the array (in the VF 

code) to the VB code. 
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4.4.2 LIMITATION  
 

Currently, hydraulic conductivity is the only variable that can be considered random in terms of 

the MC simulation.  All other input parameters are considered deterministic. 
 

 

4.5  MONTE CARLO SIMULATION FLOW CHART 

 

Figure 4.5-1 shows a flow chart that lists the steps involved in the IGW 3 MC simulation 

procedure. 

 

 
FIGURE 4.5-1 
Flow chart for the IGW 3 MC simulation procedure 
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CHAPTER 5: PROFILE MODEL 
 

The profile model employed in IGW 3 is more robust than most other profile models.  The model is 

referred to as the PV2-D model and incorporates both the plane and profile models in one.  Figure 5-1 

shows the conceptual differences between full 3-D, PV2-D, and the traditional plane and profile model.  

 

 
FIGURE 5-1 
Conceptual representation of the full 3-D, PV2-D and traditional 2-D models – need to fix picture via David 

 

 

 In terms of modeling in 3-D, the PV2-D model achieves better results than either the traditional areal or 
profile models could separately2. The new techniques allow the profile models to present more 3-D-like 

results and free the profile models to be drawn across flow lines without being completely inaccurate.   

 

Formulation of an IGW 3 profile model is based upon the following: 1) all of the information such as 

location, hydraulic features, and boundary conditions comes from the areal 2-D model (and user input, 

where appropriate), and 2) because the areal 2-D model can provide information for only the surface node 

in the profile model, where this information cannot be calculated by the profile model it will be assumed to 

be the same for all nodes below the surface (-z direction) as it is for the surface node. 

 

  

5.1  GOVERNING EQUATION 

 

Take the slice shown in Figure 5.1-1 as the reference for discussion.  Note that Figure 5.1-2 is a 
conceptualization of the areal 2-D model from which the slice was generated (and shows the 

location of the slice). 

 

 
2 This does not mean that the PV2-D model will duplicate 3-D model results.  It means only that the results 

are generally better and more representative of 3-D situations than the results obtained through traditional 

modeling techniques.  Section 11.3 presents a number of comparative cases that illustrate the effectiveness 

of the PV2-D model and its limitations. 
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FIGURE 5.1-1 
A sample vertical slice 

 

 
FIGURE 5.1-2 
Conceptualization of the areal model in which the slice from Figure 5.1-1 was made 

 

 

Considering the L-T-Z coordinate system shown in Figure 5.1-1, the governing equation for 

groundwater flow (Equation 2.2-1) can be written as 
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If Equation 5.1-1 is integrated from XT = -b/2 to XT = b/2 in the transverse direction, the result is 
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QTr represents the net transverse direction flux entering and leaving the slice (calculated from the 

areal 2-D model).  Equation 5.1-2 is based on the following assumptions 
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The governing equation for the profile model (Equation 5.1-2) is solved by the methods presented 

in Chapter 2.  Calculation of QTr is implemented in subroutine FLUXFORVMD in the source 

code.  The procedure used to solve Equation 5.1-2 is coded in subroutine TSHEAD. 

 

 

5.2  DISCRETIZING CONCEPTUAL FEATURES 

 

When a portion of the profile model crosses the conceptual features defined in the areal 2-D 

model, those features are imported into the profile model.  The importing process is done based on 

the numerical parameters evaluated at the nodal points. 
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There are two procedures used to import the data into the profile model.  One deals with point-

related features and the other with line related features.  These two procedures are discussed in the 

following subsections. 

 

5.2.1 APPROXIMATION OF POINT RELATED FEATURES 
 

Figure 5.2.1-1 illustrates an example of mapping a point related feature to the nodes. 

 

 
FIGURE 5.2.1-1 
An example of mapping a point related feature to nodes 

 

 
This mapping process involves two steps: 

 

1) Determine the location of the node nearest to the sampling node A (that lies on the i,j 

indexed nodal grid) based on the coordinates of A (XL
A, XZ

A) and the grid size 

(ΔXL,ΔXZ).  This process is accomplished through 
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and 
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where ),( O

Z

O

L XX are the coordinates of the origin in the profile model 

computational domain. 

 

In this case the nearest node is B. 

 

2) Assign the parameter value, pa, at node A to node B an all other nodes on line A-A´.  

This process in accomplished through 

 

      AB pp =     (5.2.1-3) 

 

and 

 

AAil jjjlpp −== ,...1,,  .  (5.2.1-4) 

 

5.2.2 APPROXIMATION OF POLYLINE RELATED CONCEPTUAL 
FEATURES 
 

Figure 5.2.2-1 illustrates an example of mapping a polyline related feature to the nodes.  Polyline 

related features include: aquifer top, aquifer bottom, water table, river stage, river bed elevation, 

river leakance, drain elevation, and drain leakances.  Note that although wells are point-related 

features, their associated screen lengths are treated in a manner similar to that of a polyline-related 

feature. 
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FIGURE 5.2.2-1 
An example of mapping a polyline related feature to nodes 

 
 

This mapping process involves four steps: 

 

1) The drawn polyline is divided into Np segments with the endpoints set to fall on the 

vertical grid lines (Z-direction).  The distance between the vertical grid lines is 

determined by ΔXL (which is determined from the size of the domain and the user-

specified grid resolution).   

 

This process is done in the VB interface as the line is drawn.  

 

2) For each segment, the endpoints are mapped to the nearest nodes. 
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Consider the segment AB.  The endpoints are mapped to A´ and B´ through 
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and 
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3) The values at the endpoints A and B are assigned to A´ and B´ through 
 

           AAA pjip = ),(     (5.2.2-5) 

 

and 

 

       BBB pjip = ),(  .    (5.2.2-6) 

 

4) If the segment in question crosses multiple horizontal (L-direction) grid lines, then 

 

2)( '' − BA jjABS    (5.2.2-7) 

 

is true and the nodes in the j index between A´ and B´ are determined using the linear 

interpolation scheme where 
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For screen thickness (ZsT and ZsB) interpolation, the flow rate of the well (Qwell) is 

uniformly distributed over the nodes according to 
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5.3  DETERMINATION OF COMPUTATIONAL DOMAIN 

 
The computational domain in the profile model depends on a combination of aquifer top (T), 

aquifer bottom (B), bed elevation of river or drains (E), and the water table (W).  These features in 
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relation to a sample domain are shown in Figure 5.3-1 with the features denoted by the 

corresponding letter above. 

 

 
FIGURE 5.3-1 
A sample profile model computational domain with boundary features denoted 

 

 

The methods used to determine the computational boundaries from the bounding features are 
described in the following subsections. 

 

5.3.1 UPPER BOUNDARY 
 

The upper boundary of the computational domain is set by T, E, and W.  For any point, the 

boundary is set by the lowest of these.  Thus, where the T, E, and W lines cross, the boundary-

controlling feature may change.  These crossing, or intersection, points are determined by the 

software.  Intersection points corresponding to Figure 5.3-1 are given as 

  TTWWWTPWTP =2,1
and  EEWWWEPWEPWEPWEP =4,3,2,1

.  The upper boundary 

can be described as T-PWT1-PWE1-PWE2-PWE3-PWE4-PWT2-T.  The topmost portion of the boundary is 

denoted Zmax and corresponds to PWT1 in this case. 

 

5.3.2 LOWER BOUNDARY 
 

The lower boundary is typically set by the aquifer bottom, B.  In the special case of a river that 

extends below the aquifer bottom, the bottom is then set in a similar fashion as described in 

Section 5.3.1.  The bottommost portion of the boundary is denoted Zmin. 
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5.3.3 DISPLAYED BOUNDARY 
 

The displayed computational boundary is determined by the vertical left-hand and right-hand 

boundaries (corresponding to the user-defined endpoints of the profile model), and two lines equal 
to Zmin and Zmax.  The grid is then laid out over this entire domain. 

 

5.3.4 INACTIVE CELLS 
 

All cells that lie outside of upper and lower boundaries are set to inactive by the software. 

 

5.3.5 BOUNDARY CONDITIONS 
 

The boundary conditions on the left- and right-hand sides are either constant head or no flow.  The 

lower boundary is always set to a no flow condition.  Because the upper boundary may consist of a 
number of conceptual features it will take on different boundary conditions over certain portions 

of it.  For example, in terms of Figure 5.3-1, the features and corresponding boundary conditions 

presented in Table 5.3-1 are applicable. 

 

TABLE 5.3-1 
Conceptual features and boundary conditions corresponding to the upper boundary in Figure 5.3-1 

Section Feature Boundary Condition 

T-PWT1 Aquifer Top No Flow 

PWT1-PWE1 Water Table Constant Head 

PWE1-PWE2 River Bed River Cell 

PWE2-PWE3 Water Table Constant Head 

PWE3-PWE4 River Bed River Cell 

PWE4-PWT2 Water Table Constant Head 

PWT2-T Aquifer Top No Flow 

 

 

5.4  ADDITIONAL INFORMATION 

 

Some additional information about IGW 3 profile models is presented in the following 

subsections. 

 

5.4.1 SOURCE CODE 
 

All of the techniques described in this chapter are coded in subroutine NEWCELLCNCPT. 

 

5.4.2 ANISOTROPY RATIO 
 

In order to have the most numerically well behaved solution to the profile model, the ratio of grid 

spacing the longitudinal and vertical directions, ΔXL/ΔXZ, is set by 
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This parameter may be adjusted through user input. 

 

5.4.3 RIVER CELL TREATMENTS 
 
River cells are assigned to the cells that are adjacent to the riverbed cells.  If the case is that the 

riverbed is larger than the river stage, as illustrated in Figure 5.4.3-1, then some of the river cells 

are turned into drain cells. 

 

 
FIGURE 5.4.3-1 
Example of riverbed larger than river stage 

 

 

5.4.4 TRANSIENT MODEL 
 

The IGW 3 model can be classified as quasi-transient.  This is to say the profile model will update 

at each time step if the areal 2-D model is using transient state, but it will essentially be a new 

steady-state model at each time step.  Each time the areal 2-D model updates, the profile model 

will be solved based on the new parameters provided by the areal model and no information from 

the previous profile model state is used in the next profile model solution.  This is done due to the 

fact that a transient water table requires a computational domain that is constantly fluctuating and 

presents a challenge in terms of software coding for a truly transient representation. 

 

 

5.5  PROFILE MODEL SOLVER FLOW CHART 

 
Figure 5.5-1 shows a flow chart that lists the steps involved in the IGW 3 profile model solution 

procedure. 
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FIGURE 5.5-1 
Flow chart for the IGW 3 profile model solution procedure 
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CHAPTER 6: SCATTER POINT STATISTICS 
 

This chapter describes the methods available to IGW 3 users when extrapolating/interpolating scatter point 

data into variable fields. 

 

 

6.1  INVERSE DISTANCE METHOD MATHEMATICS 

 

The inverse distance weighting (IDW) method is based on the premise that a given point for which 

a value is to be determined should be influenced most by points that are closest to it. 

 
IGW 3 employs ‘Shepard’s method’ which uses 
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as the controlling equation.  In the equation, n is the number of scatter points in the set, i is the 

index value for each scatter point, fi is the value at each scatter point, and wi is the weight factor 

for each point. 

 

The weight factor is defined as 
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where p is the inverse distance exponent, hi is the distance from the scatter point to the 

interpolation point, and the summation term the sum of these distances. 

 

 

6.2  KRIGING METHOD MATHEMATICSi 

 

The kriging method is basically a set of linear regressions.  Based on a user defined variogram 

model, the kriging method aims to minimize estimation variance.  It is based on the premise that 

points that are close together have a high degree of spatial correlation but those far apart are 
statistically independent. 

 

There are two general types of kriging: ordinary and universal.  Ordinary kriging is explicitly 

programmed into IGW 3 as it is also the backbone of the universal kriging method.  The universal 

kriging method is the application of ordinary kriging to previously detrended data and can be 

activated in IGW 3 by implementing both ‘Regression’ and kriging to a set of scatter points. 

 

ORDINARY KRIGING 

The equation used in kriging is 
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where n is the number of scatter points in the set, i is the scatter point index, f is the value for each 

individual point in the set, and w is the weighting factors for each individual point in the set. 
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The weighting factors at a particular point are determined through the solution of a set of linear 

equations.  The general form of the equation (for a point p) is 
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Thus for each interpolated point there exists a set of n equations that each have n unknowns.  For 

Equation 6.2-2, the S terms are the values of the variogram model evaluated at a distance equal to 

the distance between the two subscript points. 

 

The set of linear equations includes 
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Equation 6.2-2 is modified with a slack variable to make the number of equations and unknowns 

equivalent and becomes 
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The equations are solved simultaneously to find the w values.  Then the interpolated value, fp, is 

determined by 
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6.3  UNCONDITIONAL SIMULATION MATHEMATICS 

 

The unconditional simulation option generates a random field based upon the scatter point 

statistics only.  Thus the resulting field may not have values that exactly correspond to the scatter 

point values at the particular scatter point locations.   

 

The user may implement the ‘Spectral Algorithm’, the ‘Sequential Gaussian Simulation’, or the 

‘Turning Bands Algorithm’ as the simulation method.  These methods are discussed in Sections 

7.1, 7.2 and 7.3, respectively. 

 
In terms of the statistics, the user may specify them directly using the ‘Random Field Options’ 

window (refer to Appendix F-III in the IGW 3 User’s Manual) or automatically generate and 

manually tweak them using the ‘Variogram’ window (refer to Chapter 8 of this document and 

Appendix F-II in the IGW 3 User’s Manual). 

 

 

6.4  CONDITIONAL SIMULATION MATHEMATICS 

 

The conditional simulation option generates a random field based upon the scatter point statistics 

and the actual scatter point values.  A random field is generated which has values that exactly 

correspond to the scatter point values at the particular scatter point locations.   
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The user may implement the ‘Spectral Algorithm’, the ‘Sequential Gaussian Simulation’, or the 

‘Turning Bands Algorithm’ as the simulation method.  These methods are discussed in Sections 

7.1, 7.2 and 7.3, respectively. 

 

In terms of the statistics, the user may specify them directly using the ‘Random Field Options’ 
window (refer to Appendix F-III in the IGW 3 User’s Manual) or automatically generate and 

manually tweak them using the ‘Variogram’ window (refer to Chapter 8 of this document and 

Appendix F-II in the IGW 3 User’s Manual). 
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CHAPTER 7: RANDOM FIELDS  
 
A number of algorithms may be implemented in the random field generation process.  The desired 

algorithm is selected (and the associated parameters defined) using one of two different windows 

in the software: 1) the ‘Option of Unconditional Random Field (Attr.)’ window, and 2) the 

‘Random Parameters’ window.  The first is used when defining an unconditional random field 

directly for a zone (refer to Appendix B-I in the IGW 3 User’s Manual for a description of the 

window/interface).  The second is used when defining an unconditional or conditional random 

field for a set of scatter points within a zone (refer to Appendix F-III in the IGW 3 User’s 

Manual for a description of the window/interface). 
 

There are a number of parameters that are involved in most of the algorithms.  These are defined 

in Table 7-1 (in terms of their IGW 3 interface names). 

 

TABLE 7-1 
Common random field parameters 

Parameter Definition 

LambdaX x 

LambdaY x 

Seed x 

(Theoretical) Variance x 

Angle(X-North Clockwise) x 

Nugget x 

 

 

The specifics of each algorithm are discussed in the appropriate section. 

 

 

7.1  SPECTRAL ALGORITHM 

 

The spectral algorithm used in generating random fields is that which is implemented in the Monte 

Carlo simulation process, the Fast Fourier Transform Technique.  This technique is discussed in 

Section 4.1.1.   

 

Table 7.1-1 lists the covariance functions that may be used in the spectral algorithm. 
 

TABLE 7.1-1 
Covariance functions available for use in the spectral algorithm 

Function Type Function Form 

Anisotropic 
Bell x 

Exponential x 

Isotropic 

whittle x 

Mizzel-A x 

Mizzel-B x 

 

block average – allowed for scatter points 

 

conditional vs unconditional 

 

7.2  SEQUENTIAL GAUSSIAN ALGORITHM 

 

The sequential gaussian algorithm involves the following steps: 
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1) Transform the data into a normal distribution; 

2) Develop a variogram model for the data; 

3) Select a node at random and krige the value at that node (this gives the kriged variance); 

4) Draw a random number from a gaussian distribution that has a variance equivalent to the 

kriged variance and a mean equivalent to the kriged value (this is the simulated number 
for the node); 

5) Repeat steps 3-5 (for the kriging portion, include all previously simulated nodes to preserve 

the spatial variability as modeled in the variogram); 

6) When all nodes have been simulated, back transform to the original distribution (this is the 

first realization); and 

7) Repeat using a different random number sequence to generate multiple realizations. 

 

need the mathematics that go along with each step… 

conditional vs. unconditional… 

 

Table 7.2-1 lists the covariance functions that may be used in the sequential gaussian algorithm. 

 
TABLE 7.2-1 
Covariance functions available for use in the sequential gaussian algorithm 

Function Type Function Form 

Anisotropic 

Gaussian x 

Exponential x 

Spherical x 

Hole-Exponential x 

bombing model x 

 

 

7.3  TURNING BAND ALGORITHM 

 

unconditional only on its own 
xxxxx – steps and mathematics 

 

Table 7.3-1 lists the variogram model that may be used in the turning bands algorithm. 

 

TABLE 7.3-1 
Covariance functions available for use in the turning bands algorithm 

Variogram Model Form 

Spherical x 

Exponential x 

 

made conditional through ordinary kriging 

 

7.4  SIMULATED ANNEALING 

 

xxxxx – steps and mathematics –GSLIB says this is conditional only… always honors data 

values… how is it then implemented in the ‘Unconditional Random Field (Attr.)’ window???? 

 

Table 7.4-1 lists the covariance functions that may be used in the simulated annealing process. 
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TABLE 7.4-1 
Covariance functions available for use in the simulated annealing 

Function Type Function Form 

Anisotropic 

Gaussian x 

Exponential x 

Spherical x 

Hole-Exponential x 

Hole-Gaussian x 

 

not available in scatter point simulation …. 

 

 

 

need to add acronym references from this section to the beginning 

use correct and notation 

italics 

dimensions 
eq, tables, figs, sections 

n-ne 
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CHAPTER 8: VARIOGRAMi,ii,3 
 

The IGW 3 variogram building process that is essential to scatter point kriging and simulation is quite 

powerful in that it provides for both automatic optimization and manual model adjustment. 

 

There are three implicit options for defining spatial statistics in IGW 3: 1) fully user specified, 2) user 

adjusted automatic optimization, and 3) fully automatic optimization. 

 

The fully user specified option uses the ‘Input Parameters’ interface or ‘Random Parameters’ interface 

(refer to IGW 3 User’s Manual) for kriging or simulation, respectively.  This option essentially skips the 
formation of the experimental framework (see Section 8.1) from which to base the theoretical model. Thus 

these interfaces do not provide for any visualization of the variogram.  Thy do however provide some 

additional theoretical models (as discussed in Section 8.2). 

 

The other two options make use of the ‘Variogram’ interface (discussed further in the IGW 3 User’s 

Manual).  By default, ‘Automatic Optimization’ is selected and IGW 3 automatically generates all of the 

appropriate models and parameters.  This is the fully automatic optimization option.  The user adjusted 

automatic optimization option is implemented by selecting ‘Manual/Trial and error’ and adjusting the 

software determined parameters. 

 

The paradigm of building a variogram in IGW 3 is discussed throughout the sections of this chapter. 
 

8.1  EXPERIMENTAL VARIOGRAM 

 

The first step in the variogram building process is specifying an experimental framework from 

which to fit a theoretical model.  This is done through the following steps (refer to Figure 8.1-1 

for a graphical representation of the discussed parameters):  

 

 
FIGURE 8.1-1 
Lag parameter visualization (the red dots with crosshairs indicate scatter points) 

 
3 The indicated references were utilized a number of times throughout this chapter. 
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1) An influence radius is specified which provides the proximity cutoff limit for considering a 

pair of scatter points in the analysis.  The influence radius is represented by the outermost 

blue line in the figure. 

 

2) The number of lags is specified.  Each lag is centered about a lag line (represented by the 
blue lines in the figure).  The spacing of the lag lines is determined from the influence 

radius and number of lags by 

 

          
5.0−

=
Lag

Lag
n

IR
x        (8.1-1) 

 

where xLag = the radial lag separation between each lag line [L], 

             IR = the influence radius [L], and 

           nLag = the number of lags. 

 

Note that the innermost lag line is set at a radius of 
2

Lagx
 around the central point. 

 

Each lag extends in and out (radially) a certain distance from the lag line.  This distance 

is known as the lag tolerance.  In this case, the lag tolerance for each lag is equal to 

2

Lagx
.   

 
For example, assume that the influence radius is equal to 550 m.  Six lags are defined, so 

from Equation 8.1-1, the xLag is 100 m.  The lag line for Lag 6 (the influence radius) is at 

550 m.  Accordingly, Lag 6 covers 
2

Lagx
, 50 m, in and out from the lag line, so it covers 

from 500 m to 600 m. Thus, each point that is at a radial distance of between 500 m 

(inclusive) and 600 m (not inclusive) from the central point is considered to be in Lag 6. 

 
3) The value for each lag is computed based on the variogram type.  In IGW 3, the only 

available variogram type is ‘Semi-variogram’.  This type is defined by 

 

 
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−=
N

i

centraliradiali ff
N

h
1
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,, )(
2

1
)(       (8.1-2) 

 

where N is the number of pairs of scatter points represented by the lag, i is the index of 

the scatter point pairs, and the f variables represent the values at the two points (where the 

central indicates the central point and radial indicates the radial point – refer to Figure 

8.1-2). 
 

The user may choose to alter the radius of influence and the number of lags and may also 

choose between an isotropic or anisotropic variant of the experimental model (discussed 

in the following subsection). 
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FIGURE 8.1-2 
Point naming convention 

 
 

8.1.1 ANISOTROPIC OPTION 
 

If an anisotropic model is selected, an additional 3 parameters are available for the experimental 

framework: 1) principal angle, 2) bandwidth, and 3) angle tolerance. 

 

These parameters are visualized in Figure 8.1.1-1. 

 

 
FIGURE 8.1.1-1 
Anisotropic parameters involved in the experimental framework 
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The scatter points considered in developing the experimental framework when the ‘Anisotropic’ 

option is selected are limited to those falling within the capture envelope.  

 

 

8.2  THEORETICAL MODELS 

 

The second step in the variogram building process is fitting a theoretical model to the 
experimental framework.  The model function is selected and the parameters of the function are 

adjusted until the best bit is achieved.  This process may be automated or the model and 

parameters may be adjusted by the user. 

 

The models and their associated parameters are discussed in the following subsections. 

 

8.2.1 GENERAL PARAMETERS 
 

There are a number of parameters that are common to a number of the models.  They are 1) the 

nugget, 2) the sill (denoted as ‘variance’ in the ‘Variogram’ window), and 3) the range. 
 

The nugget, a, is the minimum variance.  The sill, b, is the average variance of points at a distance 

from the point in question that there is no correlation between the points.  The range, c, is the 

distance from a point at which there is no correlation between the point and any others.   Refer to 

Figure 8.2-1 for a visual representation of these parameters. 

 

 
FIGURE 8.2-1 
Model parameters 

 

  

Note that when ‘Anisotropic’ is selected, there will be a second set of these parameters available 
for the second direction. 

 

8.2.2 SPHERICAL 
 

The spherical model is available in both the ‘Variogram’ interface and the ‘Input Parameters’ 

interface. 

 

It is defined by 
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8.2.3 EXPONENTIAL 
 

The exponential model is available in both the ‘Variogram’ interface and the ‘Input Parameters’ 

interface. 

 

It is defined by 
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8.2.4 GAUSSIAN 

 

The gaussian model is available in both the ‘Variogram’ interface and the ‘Input Parameters’ 

interface. 
 

It is defined by 
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8.2.5 POWER 
 
The power model is available only in the ‘Input Parameters’ interface. 

 

It is defined by 

 

           abhh c +=)(                                (8.2.5-1) 

 

where 0 < c < 2. 

 

8.2.6 HOLE-EXP 
 

The hole-exp model is available only in the ‘Input Parameters’ interface. 

 
It is defined by 
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8.2.7 HOLE-GAUSS 
 

The hole-gauss model is available only in the ‘Input Parameters’ interface. 

 
It is defined by 
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8.3  VARIOGRAM PLOT 

 

The variogram plot is discussed in Appendix F-II-1 of the IGW 3 User’s Manual.   

 
Note that the experimental variogram data are given as points in the plot.  Each point represents 

one lag.  The theoretical variogram model is displayed as a line in the plot.    
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CHAPTER 9: DATA ANALYSIS 
 

Off line, exploratory analysis of scatter point data may be performed in the ‘Exploratory Data Analysis’ 

window.  This window can be accessed through the Alternate RHP (see Section 7.8.4.1 of the IGW 3 

User’s Manual) and is discussed in Appendix E of the IGW 3 User’s Manual.   

 

The following sections address some details that were not fully explained in the IGW 3 User’s Manual. 

 
9.1  CONTROLLING PARAMETERS 

 

The parameters that control the analysis (by specifying how the data are grouped) are: 

 

 1) the ‘Number of Intervals’, 

 2) the ‘Scatterplot Lag h’ value, and 

 3) the ‘Scatterplot Tolerance’. 

 

As such, the data are groped in such a way that is explained in Section 8.1.  However, the steps are 

somewhat different and are given as (refer to Figure 8.1-1 for a graphical representation of the 

discussed parameters and note the term ‘lag’ and ‘interval’ are equivalent): 

 
1) The number of intervals is specified (‘Number of Intervals’).  This is the same as the 

number of lag lines. 

 

2) The spacing of the lag lines is specified (‘Scatterplot Lag h’).  The first lag line is set at 

a radius of 
2

Lagx
 from the central point.  Each subsequent lag line is set a distance of 

xLag from the previous one. 

 
3) The tolerance for the lag lines is specified (‘Scatterplot Tolerance’).  This specifies the 

distance in and out (radially) from the lag line that the corresponding lag will extend. 

 

For example, if a lag line exists at 550 m and the scatterplot tolerance is set to 50 m, 

the corresponding lag will cover from 500 m to 600 m. 
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CHAPTER 10: SOLVER METHODSiii 
 

The three solver methods available in the IGW 3 code are: 1) the Jacobi method; 2) the Gauss-Seidel 

method; and 3) the Successive Over Relaxation (SOR) method.  These methods are discussed in the 

following sections. 

 

 

10.1  JACOBI METHOD 

 

The Jacobi method is an iterative solver in which the solution to the FD equation at a particular 

node is based on values from both the previous iteration level.  Thus, the set of FD equations for 
the entire modeling domain are all solved for a particular iteration level before the next iteration 

level is considered. 

 

Using Equation 2.3.1.4-1 as an example, the resulting iterative equation based on the Jacobi 

method is 
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where the k superscripts correspond to the iteration level. 

 

The software default, or user-specified, initial values are used in the first iteration.  The iterations 

proceed using the values obtained from the previous iteration until the solution converges at each 

node.  IGW 3 considers the solution converged when the value between an iteration and the 

subsequent iteration are different by less than some error tolerance.  The solver can also be 

instructed to stop when a certain number of iterations are performed, regardless of the error 

criteria.  The convergence criteria in IGW 3 are set in the ‘Solver’ window (refer to Chapter 13 in 

the IGW 3 User’s Manual). 
 

 

10.2  GAUSS-SEIDEL METHOD 

 

The Gauss-Seidel method is an iterative solver in which the solution to the FD equation at a 

particular node is based on values from both the previous iteration level and the current iteration 

level.  Thus, the set of FD equations for the entire modeling domain are solved in an orderly, 

predetermined way that allows the solutions to be applied in the same iteration level and 

ultimately achieve faster convergence of the overall solution. 

 

Using Equation 2.3.1.4-1 as an example, the resulting iterative equation based on the Gauss-

Seidel method is 
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where the k superscripts correspond to the iteration level. 

 
The software default, or user-specified, initial values are used in the first iteration.  The iterations 

proceed using the values obtained from the previous and present iteration (as shown in Equation 

10.2-1) until the solution converges at each node.  IGW 3 considers the solution converged when 
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the value between an iteration and the subsequent iteration are different by less than some error 

tolerance.  The solver can also be instructed to stop when a certain number of iterations are 

performed, regardless of the error criteria.  The convergence criteria in IGW 3 are set in the 

‘Solver’ window (refer to Chapter 13 in the IGW 3 User’s Manual). 

 
 

10.3  SUCCESSIVE OVER-RELAXATION METHOD 

 

The SOR method is an iterative solver in which the solution to the FD equation at a particular 

node is based on values from both the previous iteration level and the current iteration level, and 

an additional parameter. 

 

The SOR builds on the Gauss-Seidel method through the use of a relaxation factor,  (the 

additional parameter mentioned above).  We define the difference between two Gauss-Seidel 

iterations as c, the residual.  In equation form, using head (h) as the parameter of interest, 

 

            
k

P

k

P hhc −= +1
     (10.3-1) 

 

where k superscripts correspond to the iteration level. 

 

In the SOR, the user-defined relaxation factor (1.85 by default) is used in determining the value to 
be used in the next iteration through 
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Thus, the set of FD equations for the entire modeling domain are solved in an orderly, 

predetermined way that allows individual equation solutions to be applied in the same iteration 

level and using a relaxation factor to ‘inflate’ the value used in the next iteration level.  These two 

premises are implemented to achieve faster convergence of the overall solution. 

 

Using Equation 2.3.1.4-1 as an example, the resulting iterative equation based on the SOR 

method is 
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The software default, or user-specified, initial values are used in the first iteration.  The iterations 

proceed using the values (augmented by the relaxation factor) obtained from the previous and 

present iteration (as shown in Equation 10.3-1) until the solution converges at each node.  IGW 3 

considers the solution converged when the value between an iteration and the subsequent iteration 

are different by less than some error tolerance.  The solver can also be instructed to stop when a 

certain number of iterations are performed, regardless of the error criteria.  The convergence 

criteria in IGW 3 are set in the ‘Solver’ window (refer to Chapter 13 in the IGW 3 User’s 

Manual). 

 

The matrix assembly and solution are carried out by the source code subroutines SORHEADT and 
SORCBAR for head and concentration calculations, respectively.  For concentration calculations, 

Equation 10.3-3 becomes 
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In terms of the source code, the subroutines involve a coefficient matrix and a vector.  The main 

diagonal elements are stored in S00(I,J)+CST2(I,J)%SP [or S00(I,J)+CST1(I,J)%SP] and the other 

elements in those listed in Table 2.3.1-1 [or Table 3.2.1.2-1].  The vector is stored in the 

SUM23(I,J) variable. 
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CHAPTER 11: MODEL TESTING AND VERIFICATION 
 

This chapter contains a number of IGW 3 verification exercises and results.  The first section documents 

those related to the flow solver, the second section documents those related to the transport solver. 

 

 

11.1  FLOW SOLVER VERIFICATION EXERCISES 

 

The exercises presented in the following subsections test various aspects of the IGW 3 flow 

solver. 

 

11.1.1 PUMPING IN AN INFINITE CONFINED AQUIFER - THEIS 
 

Theisiv presented an exact analytical solution for the transient drawdown in an infinite uniform 

confined aquifer.  See Figure 11.1.1-1. 

                                                                                                                                                                                        

  
FIGURE 11.1.1-1v 
Radial flow to a well in a horizontal confined aquifer  

 

 

ANALYTICAL SOLUTION 

The analytical solution of the drawdown as a function of time and distance could be expressed by  
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and where 
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and the well function, W(u), is defined by 
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       .                             (11.1.1-3) 

  

 
IGW NUMERICAL SOLUTION 

IGW is applied to solve the flow problem given the assumptions presented in Table 11.1.1-1.  A 

plan view of the IGW model set up is presented in Figure 11.1.1-2. 
 

TABLE 11.1.1-1 
Assumptions related to IGW numerical solution 

Physical Parameters Numerical Parameters 

Q h0 S t T Δx Δy Δt 

1000 m3/day 25 m 0.0002 0.12 

day 

1000 m2/day 34.48 m 34.48 

m 

0.004 s 

 

 
FIGURE 11.1.1-2 
Plan view of IGW model set up 

 

 
COMPARISON OF ANALYTICAL SOLUTION AND IGW SOLUTION 

Figures 11.1.1-3 and 11.1.1-4 show comparisons between the Theis solution and the IGW 

solution. 

 

Figure 11.1.1-5 shows a 3-D comparison of the depression cones from the two solutions. 

 

The numerical solution is graphically indistinguishable from the exact solution until the drawdown 

influence begins to reach the boundaries. 
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FIGURE 11.1.1-3 
Comparison of the exact solution and the IGW predicted solution at a location 15 m from the well  
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FIGURE 11.1.1-4 
Comparison of the exact solution and the IGW predicted solution at 151.37 seconds 

 
FIGURE 11.1.1-5 
Depression cone comparison 

 

 

11.1.2 PUMPING IN AN INFINITE CONFINED ANISOTROPIC AQUIFER  
 
The exact solution to flow in an infinite, anisotropic, and confined aquifer under constant pumping 

is: 

                                                                                                                                                                                            

)(
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pQ
tyxhh
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=−             (11.1.2-1)vi 

 

where  x,y = the rectilinear coordinates relative to the pumping well [L], 

              p = Kx/Ky = the ratio of anisotropy [-], 

              S = the storage coefficient [-], 

              T = the transmissivity [L2/T], 

  t = the time [T], 

             h0 = the initial head [L], 

             Q = the constant flow rate abstracted from the well [L3/T], 
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and where 

       
Tt

Spyx
u

4

)( 22 +
=                (11.1.2-2)  

 

and the well function W(u) is defined in Equation 11.1.1-3. 
                                      

IGW NUMERICAL SOLUTION 
IGW is applied to solve the flow problem given the assumptions presented in Table 11.1.2-1.  

Refer to Figure 11.1.1-2 for a plan view of the IGW model set up.  Note the Kx is oriented left to 

right and Ky is oriented top to bottom (with respect to the plan layout on the page). 

 

TABLE 11.1.2-1 
Assumptions related to IGW numerical solution 

Physical Parameters Numerical Parameters 

Q h0 S t T p Δx Δy Δt 

1000 m3/day 20 m 0.0002 151.37 s 1000 m2/day 10 10 m 10 m 1.036 s 

 

 

COMPARISON OF ANALYTICAL SOLUTION AND IGW SOLUTION 
Figures 11.1.2-2 and 11.1.2-3 show comparisons between the Theis solution and the IGW 

solution. 

 

 
FIGURE 11.1.2-2 
Comparison of the analytical solution and the IGW solution at a location 100 meters from the well  

 

 

Figure 11.1.2-4 shows a 3-D comparison of the depression cones from the two solutions. 
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The numerical solution is graphically indistinguishable from the exact solution until the drawdown 

influence begins to reach the boundaries. 

 
FIGURE 11.1.2-3 
Comparison of the analytical solution with the IGW solution at 151.37 seconds 
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FIGURE 11.1.2-4 
Depression cone comparison 

 

11.1.3 PUMPING NEAR AN IMPERVIOUS BODY  
 

When a confined aquifer is bounded on one side by a straight-line impermeable boundary, 

drawdown due to pumping will be greater near the boundary (see Figure 11.1.3-1). 

 

 
FIGURE 11.1.3-1 
Drawdown near an impervious boundaryii 

 

 

ANALYTICAL SOLUTION 

The analytical solution for drawdown near an impervious boundary as a function of time and 

space is given by    
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where =yx,  rectilinear coordinates relative to the pumping well [L], 

 =a  the distance of pumping well from constant head boundary [L], 

                             =S  the aquifer storage coefficient [-], 

                            =T  the aquifer transmissivity [L2/T], 

 =t  the time [T], 

                           =0h  the initial head in the boundaries before pumping [L], 

              =Q  the constant flow rate abstracted from the well [L3/T], 

 

and where 
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and the well function W(u) is defined in Equation 11.1.1-3.  

 

IGW NUMERICAL SOLUTION 
IGW is applied to solve the flow problem given the assumptions presented in Table 11.1.3-1.  A 

plan view of the IGW model set up is given in Figure 11.1.3-2.   

 

TABLE 11.1.3-1 
Assumptions related to IGW numerical solution 

Physical Parameters Numerical Parameters 

Q h0 S t T a Δx Δy Δt 

1000 m3/day 20 m 0.0002 151.37 s 1000 m2/d 50 m 5.5 m 5.5 m 1.0368 s 

 

 
FIGURE 11.1.3-2 
Plan view of IGW model setup 

 
 

COMPARISON OF ANALYTICAL SOLUTION AND IGW SOLUTION 
Figures 11.1.3-3 and 11.1.3-4 show comparisons between the Theis solution and the IGW 

solution. 

 

Figure 11.1.3-5 shows a 3-D comparison of the depression cones from the two solutions. 

 

The numerical solution is graphically indistinguishable from the exact solution until the drawdown 

influence begins to reach the boundaries. 
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FIGURE 11.1.3-3 
Transient comparison between the analytical solution and the IGW solution at 50 meters from the pumping well  

 

 
FIGURE 11.1.3-4 
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Comparison of the analytical solution with the IGW solution and 151.37 seconds 

 

 
FIGURE 11.1.3-5 
Depression cone comparison 

 

 

11.1.4 PUMPING NEAR A CONSTANT HEAD BOUNDARY  
 

When a confined aquifer is bounded on one side by a straight constant head boundary, drawdown 

due to pumping will be less near the boundary (see Figure 11.1.4-1). 

 

 
FIGURE 11.1.4-1 
Drawdown near a constant head boundaryii 

 
 

ANALYTICAL SOLUTION 



 

96 

The analytical solution for drawdown near a constant head boundary as a function of time and 

space is given byviii 
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             (11.1.4-1) 

 

where =yx,  rectilinear coordinates relative to the pumping well [L], 

  =a  the distance of pumping well from constant head boundary [L], 

 =S  the aquifer storage coefficient [-], 

 =T  the aquifer transmissivity [L2/T], 

 =t  the time [T], 

             =0h  the initial head in the boundaries before pumping [L], 

=Q  the constant flow rate abstracted from the well [L3/T], 

 

and where 
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and the well function, W(u) is given in Equation 11.1.1-3.  Note that the subscripts i and r stand 

for real and imaginary, respectively. 

IGW NUMERICAL SOLUTION 

IGW is applied to solve the flow problem given the assumptions presented in Table 11.1.4-1.  

Refer to Figure 11.1.3-2 for a plan view of the IGW model set up (and note that the impervious 

boundary is replaced with a river that has a constant defined head).   

 

TABLE 11.1.4-1 
Assumptions related to IGW numerical solution 

Physical Parameters Numerical Parameters 

Q h0 S t T a Δx Δy Δt 

1000 m3/day 20 m 0.0002 151.37 s 1000 m2/d 50 m 10 m 10 m 1.036 s 

 

 

COMPARISON OF ANALYTICAL SOLUTION AND IGW SOLUTION 
Figures 11.1.4-2 and 11.1.4-3 show comparisons between the analytical solution and the IGW 
solution. 

 

Figure 11.1.4-4 shows a 3-D comparison of the depression cones from the two solutions. 

 

The numerical solution is graphically indistinguishable from the exact solution until the drawdown 

influence begins to reach the boundaries. 
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FIGURE 11.1.4-2 
Transient comparison between the analytical solution and the IGW solution at 50 meters from the well  

 

 
FIGURE 11.1.4-3 
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Comparison of the analytical solution with the IGW solution at 151.37 seconds 
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FIGURE 11.1.4-4 
Depression cone comparison 

 

 

11.1.5 TRANSIENT AQUIFER DYNAMICS – TIDAL RIVER RESPONSE  
 

Waves in surface water bodies will propagate into aquifers that are in direct communication with 

them (see Figure 11.1.5-1). 

 

      
FIGURE 11.1.5-1 
Cross-section of an aquifer in direct communication with a surface water body      
 

 

ANALYTICAL SOLUTION 

The problem has been investigated by Ferrisix, who considered sinusoidal stage changes in the 

surface water body. If s is the stage change in the aquifer (departure from the equilibrium 

piezometric head value), then 
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            )
2

sin()
2

exp(),(
22

T

Sx
t

T

Sx
stxs r





−−=              (11.1.5-1) 

 

where =rs  the amplitude or half-range of the stage change in the surface water body [L],  

                         ==  /2 the frequency [T-1],   

                          =S  the aquifer storage coefficient [-], 

                          =T  the aquifer transmissivity [L2/T],   

             =t  the time [T], and 

            =x  the distance from the surface water body [L]. 

 
IGW NUMERICAL SOLUTION 

IGW is applied to solve the flow problem given the assumptions presented in Table 11.1.5-1.  A 

plan view of the IGW model set up is given in Figure 11.1.5-2.   

 

TABLE 11.1.5-1 
Assumptions related to IGW numerical solution 

Physical Parameters Numerical 

Parameters 

x h0 S t T sr ω Δx Δy Δt 

82.61 and 

203.452 m 

0 m 0.0002 1120 d 0.1 

m2/d 

2 m 1 d-1 8.5 m 8.5 m 2 d 

 

 
FIGURE 11.1.5-2 
Plan view of the IGW model setup 

 

 

COMPARISON OF ANALYTICAL SOLUTION AND IGW SOLUTION 
Figures 11.1.5-3 and 11.1.5-4 show comparisons between the Theis solution and the IGW 
solution. 
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FIGURE 11.1.5-3 
Transient aquifer dynamics in response to tidal surface bodies at monitoring well #1 

 

 
FIGURE 11.1.5-4 
Transient aquifer dynamics in response to tidal surface bodies at monitoring well #2 

 

 

The numerical solution is graphically consistent with the exact solution. 
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11.1.6 1D STEADY-STATE FLOW IN UNCONFINED AQUIFER (NO 
RECHARGE)  

Unconfined aquifer with constant head boundaries on left and right sides are given below. 

 
Unconfined aquifer with two constant head boundaries 

Analytical solution 

( )

( )

2 2

2

0

1

2 2
2 0 1
0

0

1

;

0 0, 0

0 :

:

( )
( )

: , [ ]

: 0, [ ]

: , [ ]

:

For steady state flow conditions

d hdq d dh
kh

dx dx dx dx

x h h

x L h h

h h x
h x h

L

where h x predicted head at a given distance L

h constant head at x L

h constant head at x L L

x distance fr

 
=  = = 

 

= =

= =

−
= −

=

=

, [ ]

: , [ ]

om the left boundary L

L length of the domain L

 

 
Physical Parameters 

Aquifer Top / Bottom h0 h1 K L 

30 m and 0 m 20 m 10 m 50 m/d 1000 m 
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 Numerical setup 
 Using given physical and numerical parameters, IGW is applied to solve the one-dimensional 

groundwater flow problem. 

 
 

IGW Numerical Parameters 

Δx Matrix solver Maximum outer iterations Relative tolerance 

4.92 m Algebraic multi grid 10 0.0001 % 
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Comparison of analytical solution and IGW solution (no recharge) 

 
 
11.1.6 1D STEADY-STATE FLOW IN UNCONFINED AQUIFER (WITH 

RECHARGE)  
 

In this case an unconfined aquifer is adjacent to two constant head boundaries and constant 

recharge is applied to top of the aquifer (see Figure 11.1.6-1).  

  

 
FIGURE 11.1.6-1 
Unconfined aquifer with two constant head boundaries 
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ANALYTICAL SOLUTION  

The analytical solution for steady state flow for head prediction along the aquifer’s length (1D) is 

given by (where it is assumed that aquifer is homogenous)    
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=

=

, [ ]
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: , [ / ]

: , [ / ]

e from the left boundary L

L length of the domain L

N recharge L T

k hydraulic conductivity L T

              (11.1.6-1) 

 

 

IGW NUMERICAL SOLUTION 

IGW is applied to solve the flow problem given the assumptions presented in Table 11.1.6-1.  A 
plan view of the IGW model set up is given in Figure 11.1.6-2.   

 

TABLE 11.1.6-1 
Assumptions related to IGW numerical solution 

Physical Parameters 

Aquifer Top / Bottom h0 h1 K r L 

30 m and 0 m 20 m 10 m 50 m/d 0.1 m/d 1000 m 

 

 
COMPARISON OF ANALYTICAL SOLUTION AND IGW SOLUTION 

Figure 11.1.6-3 shows a comparison between the analytical solution and the IGW solution. 
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FIGURE 11.1.6-2 
Plan view of IGW model setup 

 

 
FIGURE 11.1.6-3 
Comparison of the analytical solution and the IGW solution 
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IGW Numerical Parameters 

Δx Matrix solver Maximum outer iterations Relative tolerance 

4.92 m Algebraic multi grid 10 0.0001 % 

 

The numerical solution is graphically indistinguishable from the exact solution. 

 

11.1.7 ISLAND AQUIFER  
 
In the island aquifer problem, IGW was compared to the analytical solution of the steady state 

head distribution due to groundwater pumping in a homogeneous aquifer. Hydraulic head is 

calculated for a cylindrical island with a constant abstraction rate in a well in the center of the 

island. Constant recharge is added on top of the aquifer (see Figure 11.1.7-1). 

 

                            
FIGURE 11.1.7-1 
The island aquifer 

 
 

ANALYTICAL SOLUTION 

The steady-state solution of the hydraulic head (before pumping), h, as a function of the radial 

distance from the well, r, is given by 

;For steady state flow conditions  
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Q constant pumping discharge L T

k hydraulic conductivity L T

r radial distance L

R distance from the left boundary L

L length of the domain L

N recharge L T

              

(11.1.7-1) 
 

 

 

NUMERICAL SOLUTION 

IGW is applied to solve the flow problem given the assumptions presented in Table 11.1.7-1.  A 

plan view of the IGW model set up is given in Figure 11.1.7-2 (note that the pumping well is 

located at (507.5,438.5).   

 

TABLE 11.1.7-1 
Assumptions related to IGW numerical solution 

Physical Parameters Numerical 

Parameters 

w Aquifer Top / 

Bottom 

Qw H Sy K R Δx / 

 # cells 

Δy / 

 # cells 

0.1 m/day 50 m and 0 m 3000 

m3/day 

20 

m 

0.1 50 m/day 323 

m 

5.5 m / 

200 

5.5 m / 

150 

 

 

COMPARISON OF ANALYTICAL SOLUTION AND IGW SOLUTION 

Comparison between the analytical solution and IGW is presented for two cases. The first case 
(Figure 11.1.7-3) occurs before pumping when only recharge is added to the island aquifer and 

the second (Figure 11.1.7-4) occurs after pumping. Both cases are in steady state condition. 
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FIGURE 11.1.7-2 
IGW model layout for island aquifer 
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FIGURE 11.1.7-3 
The island aquifer analytical solution compared to IGW – before pumping 

 
IGW Numerical Parameters 

Δx Matrix solver Maximum outer iterations Relative tolerance 

3.18 m Algebraic multi grid 10 0.0001 % 

 
 

 

FIGURE 11.1.7-4 
The island aquifer analytical solution compared to IGW – after pumping 

 

 

 

 

Note that the numerical solution is graphically indistinguishable from the exact solution. 

 

11.1.8 1D STEADY-STATE FLOW IN CONFINED AQUIFER (NO 
RECHARGE)  
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IGW Numerical Parameters 

Δx Matrix solver Maximum inner iterations Tolerance 

4.92 m Algebraic multi grid 4000 0.000001 

 
 
11.1.8 STEADY-STATE FLOW WITH RECHARGE - CONFINED  
 

Consider a confined aquifer which is adjacent to two constant head boundaries and a constant 
recharge infiltrates at the top of the aquifer (see Figure 11.1.8-1). 
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FIGURE 11.1.8-1 
Confined aquifer with two constant head boundaries 

 

ANALYTICAL SOLUTION 

The analytical solution for steady state flow for head prediction along the aquifer’s length (1D) is 

given by (assuming aquifer homogeneity)    
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              (11.1.8-1) 

 

IGW NUMERICAL SOLUTION 

IGW is applied to solve the flow problem given the assumptions presented in Table 11.1.8-1. 

Refer to Figure 11.1.6-2 for a plan view of the IGW model set up (note that unconfined is 

replaced with confined). 
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TABLE 11.1.8-1 
Assumptions related to IGW numerical solution 

Physical Parameters Numerical 

Parameters 

Aquifer Top / Bottom h0 h1 r L Δx Δy 

-10 m and -50 m 20 m 10 m -0.2 m/day 1000 m 5.5 m 5.5 m 

 

COMPARISON OF ANALYTICAL SOLUTION AND IGW SOLUTION 

Figure 11.1.8-2 shows a comparison between the analytical solution and the IGW solution. 

 

 
FIGURE 11.1.8-2 
Comparison of the analytical solution and IGW 

 

IGW Numerical Parameters 

Δx Matrix solver Maximum inner iterations Tolerance 

3.18 m Algebraic multi grid 4000 0.000001 

 

 

Note that the numerical solution is graphically indistinguishable from the exact solution. 

 

11.1.9 STEADY-STATE FLOW IN CONFINED AQUIFER WITH VARIABLE 
THICKNESS  
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CONFINED AQUIFER WITH A VARIABLE THICKNESS OF EXPONENTIAL 

FUNCTION 
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11.2 UNCONFINED AQUIFER WITH VARIABLE HYDRAULIC 
CONDUCTIVITY 

 

 
 

 

 

CONFINED AQUIFER WITH VARIABLE HYDRAULIC 

CONDUCTIVITY 
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CONFINED AQUIFER WITH ONE VARIABLE HYDRAULIC 

CONDUCTIVITY ZONE 
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TOTH SOLUTION 

 

Assumptions: 

1. Aquifer is isotropic and homogeneous which is bounded with an impermeable 

basement. 

2. Flow is restricted to a two-dimensional vertical section and water table can be 

approximated by a sine wave. 

3. Upper boundary of the two-dimensional vertical section is the water table. 

 

Toth considered a sinusoidal water table with a regional slope of the form 
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11.2  TRANSPORT SOLVER VERIFICATION EXERCISES 

 

 

CONCENTRATION IN THE RESERVOIR IS CONSTANT 
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The exercises presented in the following subsections test various aspects of the IGW 3 transport 

solver. 

 
 

 

 

DISPERSION IN RADIAL FLOW 
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11.2.1 ADVECTION AND ANISOTROPIC DISPERSION  
 
 

 
 

 
 

An analytical solution for the migration of a gaussian plume in uniform flow (see Figure 11.2.1-1) 
was presented by Baetslex as 
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=              (11.2.1-1)  

 

where mC = the initial concentration of the gaussian plume [ML-3], 

         
0x = the initial standard deviation at x direction [L], 

         
0y = the initial standard deviation at y direction [L], 

     
00 , yx = the central coordinate of the gaussian plume[L], 

          LD = the longitudinal dispersion coefficient [l2T-1], 

          TD = the transverse dispersion coefficient [l2T-1], 

           xv = the velocity of uniform flow in x direction [LT-1] 

 

and where 

 

tDLxox 222 += ,                (11.2.1-2) 

        

tDTyoy 222 += ,               (11.2.1-3) 

     

     tvxX x−=  ,               (11.2.1-4) 

 

and      
 

                            yY = .                                                           (11.2.1-5) 

 

NUMERICAL SOLUTION 

IGW is applied to solve the flow problem given the assumptions presented in Table 11.2.1-1.   

 

COMPARISON OF ANALYTICAL SOLUTION AND IGW SOLUTION 

Figures 11.2.1-2, 11.2.1-3, and 11.2.1-4 show comparisons between the analytical and numerical 

solutions.  Note that the two solutions are indistinguishable.  Figure 11.2.1-5 shows the legend. 

  
FIGURE 11.2.1-1 
The initial contamination is a gaussian plume centered at x0, y0   
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After 50 days, 101x101 grids, 100 time steps 
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After 50 days, for 201x201 grids, 100 time steps 

 
 

After 100 days, for 201x201 grids, 200 time steps 
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After 50 days, for 101x77, 100 time steps, dx=10 dy=10 
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After 50 days, for 201x152, 100 time steps, dx=5 dy=5 
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Analytical-MMOC Trilinear 
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Analytical-TVD 
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Analytical-others 

 
 

 

 

 

TABLE 11.2.1-1 
Assumptions related to IGW numerical solution 

Physical Parameters Numerical 

Parameters 

0x  
0y  DL x0 

xv  Cm DT y0 Δx Δy Δt 

50 m 35 m 10 m2/d 500 

m 

1 m/d 100 

ppm 

1 m2/d 375 

m 

10 m 10 m 0.5 d 
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 FIGURE 11.2.1-2 
Comparison between IGW and analytical solutions at initial conditions 

 

 
FIGURE 11.2.1-3 
Comparison between IGW and analytical solutions at 50 days 

 

 
FIGURE 11.2.1-4 
Comparison between IGW and analytical solutions at 100 days 
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FIGURE 11.2.1-5 
Legend for Figures 11.2.1-2, 11.2.1-3, and 11.2.1-4 
 

 

11.2.2 ADVECTION AND ANISOTROPIC DISPERSION WITH ANGLE  
 

A special case of the solution presented in Section 11.2.1 where there is an orientation in the 

uniform flow to the horizontal axes (illustrated in Figure 11.2.2-1), is presented in this section. 

 

 

      
FIGURE 11.2.2-1 
The initial contamination is a gaussian plume centered at x0, y0; note the angle of orientation  

 

 

For this special case 
 

          tvxX x−= '                (11.2.2-1) 

 

and 

 

          tvyY y−= '                 (11.2.2-2) 

 

where yv = the velocity of uniform flow the y direction [L/T]. 

 

These equations replace Equations 11.2.1-4 and 11.2.1-5.  Note that 

 

)sin()cos('  yxx +=               (11.2.2-3) 

 

and 

  )sin()cos('  xyy −= .              (11.2.2-4) 

 

where  = the angle of uniform flow with the horizontal axis [-]. 

 

NUMERICAL SOLUTION 

IGW is applied to solve the flow problem given the assumptions presented in Table 11.2.2-1.   
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TABLE 11.2.2-1 
Assumptions related to IGW numerical solution 

Physical Parameters Numerical 

Parameters 

0x  
0y  DL x0 

xv ,
yv , and θ Cm DT y0 Δx Δy Δt 

50 m 35 m 10 

m2/d 

500 

m 

10 m/d, 1 m/d 

and 45˚ 

100 

ppm 

1 

m2/d 

375 

m 

25 m 25 

m 

0.5 d 

 

  

COMPARISON OF ANALYTICAL SOLUTION AND IGW SOLUTION 

Figure 11.2.2-2 shows a comparison between the IGW 3 solution and the analytical solution. 
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FIGURE 11.2.2-2 
Comparison of the IGW solution and the analytical solution at: (a) 0 days, (b) 50 days, and (c) 100 days 

 

Note that the results obtained from the IGW solution are physically realistic and show no 

unphysical oscillations or negative concentrations. 

 

Figure 11.2.2-3 shows a comparison between the traditional FD method (not the IGW 3 RCVT 

method) and the analytical solution. 
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FIGURE 11.2.2-3 
Comparison of the traditional FD solution and analytical solution at: (a) 0 days, (b) 50 days, and (c) 100 days 
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Notice the unphysical oscillations and negative concentrations that plague the traditional FD 

method. 

 
A comparison between the analytical solution, IGW RCVT solution method and the traditional FD 

solution method is illustrated in Figure 11.2.2-4.   
 

 
FIGURE 11.2.2-4 
Comparison of the analytical solution, the IGW 3 RCVT solution method and the traditional FD solution method   

 

 

The results indicate that the IGW solution and the analytical solution provide very similar 

solutions, however, the traditional method provides significantly different and incorrect results. 

 

 

11.3  TRANSPORT SOLVER VERIFICATION EXERCISES 

 
This section presents comparisons of measured and simulated heads for solutions from 3-D 

models, PV2-D models, and traditional 2-D models.  The comparisons are based on a number of 

different cases and are organized into the following subsections as such. 

 

A number of parameters were held consistent for each case and are given in Table 11.3-1. 

 

TABLE 11.3-1 
Parameters consistent for each case 

Parameter Value 

Processor Intel® Pentium 4 @ 1.7 GHz 

Grid Dimensions x = 4.0 m; y= 4.0 m; z = 4.0 m 

 

 

11.3.1 UNIFORM FLOW CONDITION  
 

Figure 11.3.1-1 shows a conceptual representation of the modeled situation. 
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FIGURE 11.3.1-1 
Conceptual representation for uniform flow case  
 

 

Figure 11.3.1-2 compares the full 3-D model solution and the plane 2-D solution.  These results 

are identical. 

 

Figures 11.3.1-3, 11.3.1-4, and 11.3.1-5 compare the layer-based 3-D, PV2-D, and traditional 

profile 2-D model solutions for the profile ‘xdir-y200m’, ‘45dir-y390m’, and ‘45dir-y250m’, 

respectively.  The three models yield identical results for each of the three cases. 
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FIGURE 11.3.1-2 
Comparison of 3-D and plane 2-D solutions 
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FIGURE 11.3.1-3 
Comparison of the 3-D, PV2-D, and traditional profile 2-D model results for the ‘xdir-y200m’ profile 
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FIGURE 11.3.1-4 
Comparison of the 3-D, PV2-D, and traditional profile 2-D model results for the ‘45-y390m’ profile 
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FIGURE 11.3.1-5 
Comparison of the 3-D, PV2-D, and traditional profile 2-D model results for the ‘45dir-y250m’ profile 
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11.3.2 CONSTANT HEAD CONDITION  
 

 Figure 11.3.2-1 shows a conceptual representation of the modeled situation. 
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FIGURE 11.3.2-1 
Conceptual representation for the constant head case 

 

 

Figure 11.3.2-2 compares the full 3-D solution and plane 2-D solution.  The results are identical. 
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FIGURE 11.3.2-2 
Comparison of 3-D and plane 2-D solutions 
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Figures 11.3.2-3, 11.3.2-4, and 11.3.2-5 compare the layer-based 3-D, PV2-D, and traditional 

profile 2-D model solutions for the profile ‘xdir-y200m’, ‘45dir-y390m’, and ‘45dir-y250m’, 

respectively.   
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FIGURE 11.3.2-3 
Comparison of the 3-D, PV2-D, and traditional profile 2-D model results for the ‘xdir-y200m’ profile 
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FIGURE 11.3.2-4 
Comparison of the 3-D, PV2-D, and traditional profile 2-D model results for the ‘45-y390m’ profile 
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FIGURE 11.3.2-5 
Comparison of the 3-D, PV2-D, and traditional profile 2-D model results for the ‘45dir-y250m’ profile 
 

 

The profile model comparisons show that the results from the PV2-D model are identical to the 

results from the 3-D model.  This is due to the fact that the PV2-D model considers cross-flow in 

its solution.  The traditional profile 2-D model does not agree with the 3-D/PV2-D solution as it 
shows uniform head distributions along each of the cross-sections. 

 

 

11.3.3 PARTIALLY PENETRATED CONSTANT HEAD CONDITION  
 

Figure 11.3.3-1 shows a conceptual representation of the modeled situation. 

 

Figures 11.3.3-2 and 11.3.3-3 compare the full 3-D solution and the plane 2-D solution (for a 

constant head feature leakance of 10/day and 50/day, respectively in the 2-D model).   The plane 

2-D model shows results that deviate from the 3-D model solution.  This occurs because the plane 
2-D model can only show the depth-averaged flow pattern and thus the vertical nuances 

introduced by the partially penetrating constant head feature are not fully realized.  The highest 

deviations are found nearest to the constant head feature. 

 

Figures 11.3.3-4, 11.3.3-5, 11.3.3-6, and 11.3.3-7 compare the full 3-D, PV2-D, and traditional 

profile 2-D model solutions for the profile ‘xdir-y200m’ with the leakance value of 10/day, ‘xdir-

y200m’ with the leakance value of 50/day, ‘45dir-y390m’ with the leakance value of 10/day, and 

‘45dir-y250m’ with the leakance value of 10/day, respectively.  The results for the PV2-D model 

are more similar to the 3-D model than the traditional profile 2-D model, but they deviate greatly 

in the portion of the model below the lake.  This occurs because the PV2-D model receives only 

average cross-flux data from the plane 2-D model and thus cannot resolve the vertical variations. 
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FIGURE 11.3.3-1 
Conceptual representation for the partially penetrating constant head case 
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FIGURE 11.3.3-2 
Comparison of 3-D and plane 2-D solutions with constant head feature in 2-D model assigned leakance of 10/day 
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FIGURE 11.3.3-3 
Comparison of 3-D and plane 2-D solutions with constant head feature in 2-D model assigned leakance of 10/day 
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FIGURE 11.3.3-4 
Comparison of the 3-D, PV2-D, and traditional profile 2-D model results for the ‘xdir-y200m’ profile with the 

leakance value of 10/day 
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FIGURE 11.3.3-5 
Comparison of the 3-D, PV2-D, and traditional profile 2-D model results for the ‘xdir-y200m’ profile with the 

leakance value of 50/day 
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FIGURE 11.3.3-6 
Comparison of the 3-D, PV2-D, and traditional profile 2-D model results for the ‘45dir-y390m’ profile with the 

leakance value of 10/day 



 

147 

9
8

9
4

9
2 9
0 9

0

X(m)

Z
(m

)

0 100 200 300
0

50

100

150

200

250

300

9
9

9
8

9
7

9
6

9
5

94 9
3 9

2

X(m)

Z
(m

)

0 100 200 300
0

50

100

150

200

250

300

88

90

9292

94

969
8

X(m)

Z
(m

)

0 100 200 300
0

50

100

150

200

250

300

Profile "45dir-y250m"
HL= 100 m, HR= 98 m
Partially penetrated 100x100x40m
Leakance = 10 1/day

Dx=Dy=Dz=4.0m
Kx=Ky=Kz=20 m

2
/day

PV2D

Full 3D

Traditional 2D

 
FIGURE 11.3.3-7 
Comparison of the 3-D, PV2-D, and traditional profile 2-D model results for the ‘45dir-y250m’ profile with the 

leakance value of 10/day 
 

 

11.3.4  STEP GEOMETRY AT AQUIFER BOTTOM  
 

Figure 11.3.4-1 shows a conceptual representation of the modeled situation. 

 
Figures 11.3.4-2 11.3.4-3, and 11.3.4-4 compare the full 3-D layer-based 3-D, PV2-D, and 

traditional profile 2-D model solutions for the ‘xdir-200m’, ‘45dir-250m’, and ‘45dir-390m’ 

profiles, respectively.   

 

The results for the PV2-D model are more similar to the full 3-D model than the traditional profile 

2-D model.  This occurs because the PV2-D model considers cross-flow data in its solution.  The 

layer-based 3-D model shows large deviations (from the full 3-D model) near the bottom of 

modeling domain.  The deviations in the PV2-D occur because the PV2-D model receives only 
average cross-flux data from the plane 2-D model and thus cannot completely resolve the vertical 

variations. 
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FIGURE 11.3.4-1 
Conceptual representation for the step geometry at aquifer bottom case 
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FIGURE 11.3.4-2 
Comparison of the full 3-D, layer-based 3-D, PV2-D, and traditional profile 2-D model results for the ‘xdir-y200m’ 

profile 
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FIGURE 11.3.4-3 
Comparison of the full 3-D, layer-based 3-D, PV2-D, and traditional profile 2-D model results for the ‘45dir-y250m’ 

profile 
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FIGURE 11.3.4-4 
Comparison of the full 3-D, layer-based 3-D, PV2-D, and traditional profile 2-D model results for the ‘45-y390m’ 

profile 
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11.3.5  GENERAL STATEMENTS  
 

The previous examples show the important role of the cross flux terms in profile model 

formulation. The traditional profile 2-D model, which does not consider the cross flux term, will 
either over or under estimate the profile head values. 

 

The PV2-D model in a flow field with no vertical variations will perfectly reproduce the full 3-D 

model results. This is important when modeling large areas where a great number of nodes are 

needed to fully represent the area in the model. The PV2-D model may be employed in lieu of the 

3-D model to significantly reduce the amount of computational power needed to obtain an 

accurate solution.   

 

In a constant head area, the PV2-D solution is most applicable for a constant head feature that is 

fully penetrating (the solution is equivalent to the 3-D model solution).  Significant deviations 

develop below the constant head feature bottom (when it is not fully penetrating), therefore it can 

be said that the PV2-D model increases in accuracy as the depth of the constant head feature 
increases.  Further study has shown that a constant head feature depth larger than half of aquifer 

depth is acceptable for PV2-D model by adjusting the lake leakance to approach the full 3-D 

model. 

 

The drawback of the PV2-D model is that its accuracy is dependent on the cross flux terms from 

the plane 2-D model. It can be said that the PV2-D model under estimates the head distributions 

near complex flow pattern areas (i.e. the bottom of a partially penetrating lake or an area of 

significant aquifer geometry change) because the cross flux terms are averaged over the depth of 

the aquifer in the plane 2-D model and therefore do not allow the PV2-D model to resolve any 

vertical variations. 
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