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Preface

The purpose of T-PROGS is to enable implementation of a transition probability/Markov ap-
proach to geostatistical simulation of categorical variables. In comparison to traditional vario-
gram-based geostatistical methods, the transition probability/Markov approach improves con-
sideration of spatial cross-correlations and facilitates the integration of geologic interpretation
of facies architecture into the model development process. The manual was designed primar-
ily for geostatistical practitioners, not theoreticians. In our experience, geostatistics is not the
primary occupation of most users of geostatistical simulation codes. As such, the manual re-
lies on references for much of the theoretical details. The T-PROGS computer source codes
are provided without any warranty or guarantee of freedom from bugs. On the other hand, the
accessibility of the source code frees the user to make any modifications as needed. An effort
has been made to achieve a high degree of platform independence, however the responsibility
rests upon the user to make any specific or system-dependent changes in the FORTRAN code
or PostScript graphical output. The user should take responsibility for properly compiling the
codes, checking dimensioning of arrays, constructing parameter files, understanding the theory
behind the algorithms, and modifying input or output formats for interfacing with other pro-
grams. Questions not addressed in this manual as well as comments on the manual or code may
be e-mailed t@arle1@lInl.gov.
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Summary

Transition Proability Geostatistical 8ftware (T-PROGS) is a set of FORTRAN computer pro-
grams that implements a transition probability/Markov approach to geostatistical analysis and
simulation of spatial distributions of categorical variables (e.g., geologic units, facies). Im-
plementation of T-PROGS involves three main steps: (a) calculation of transition probability
measurements, (b) modeling spatial variability with Markov chains, and (c) conditional simu-
lation. These steps are accomplished by the following programs:

« GAMEAS computes bivariate statistics (e.g., transition probability, indicator cross-variogram,
etc.).

« MCMOD develops one- and three-dimensional Markov chain models of spatial variability.
e TSIM generates three-dimensional, cross-correlated conditional simulations.

The transition probability/Markov approach was developed to facilitate incorporation of ge-
ologic interpretation and improve consideration for spatial cross-correlations (juxtapositional
tendencies) in the development of geostatistical models. Further details on theory, examples,
and comparison to other geostatistical methods are given in Carle (1996), Carle and Fogg
(1996), Carle (1997a), Carle (1997b), Carle and Fogg (1997), and Carle and others (1998).

The graphical display of results may be produced with FORTRAN computer programs that
generate “PostScript’ (PS) graphics files (Adobe Systems Incorporated, 1990):

e GRAFXX plots a matrix of one-dimensional (along a single direction) bivariate statistics.
o« CHUNK displays a three-dimensional perspective of the conditional simulation.

The T-PROGS implementation process, from data to producing simulation results and graphical
output, is shown in Figure 1. The PS files may be converted to ‘Encapsulated PostScript’
(EPS) using a program callgd2eps.f(or) which facilitates inclusion into text-processing and
graphics presentation programs. The PS and EPS files can also be printed directly to a printer
having a PostScript driver or viewed on screen with a PostScript viewer such as ‘Ghostview.”

The general style of the program execution is analogous to the Geostatistical Software Li-
brary (GSLIB) by Deutsch and Journel (1992), whereby parameter files are prepared to admin-
ister input data for the executable codes. INdEAIMEAS andTSIM originated from GSLIB
codes, an6RAFXX andCHUNK contain aspects of GSLIB code as well. Two main data for-
mats are used, one for point data and the other for gridded data. Point data, in particular coded
lithologies located in an, y, z coordinate system or bivariate statistics computed as a func-
tion of lag (variograms, transition probabilities, etc.), are stored in a free-format ‘GEOEAS’
ASCII format. Grid data, in particular 3-D Markov chain models and conditional simulations,
are stored in a compact binary format. The simulations can also be output in an ASCII format to
promote portability. The PS and EPS graphics files are also produced in ASCII format, which
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Figure 1. Schematic diagram showing implementation of T-PROGS.

provides opportunity for direct manipulation of graphical output given some understanding of
PostScript.

The general style of this manual is designed to facilitate application to real problems. More
often than not, the user will have a data set in mind, with a goal of developing a model of a
heterogeneous geologic system. Therefore, the T-PROGS manual is organized to accommodate
the chronological progression of a typical application.



2 Background

T-PROGS offers a transition probability-based geostatistical approach to stocloaslitonal
simulation of spatial distributions of categorical variables. T-PROGS can be used to analyze
spatial variability and generatealizationsof geologic units ofacies Importantly, the realiza-
tions attempt to honor existing data and display consistency with the spatial variability evident
in data or other geologic observations.

The overall goal of T-PROGS is to simplify conceptual aspects of geostatistical modeling,
yet maximize theoretical potential. Considering that potential users of T-PROGS will have
varying backgrounds, here is some general advice:

« Tothose who are not familiar with geostatistics: Fear not! You do not need to know anything
about variograms. T-PROGS emphasizes the extension of general and intuitive concepts
from probability theory to spatial problems.

o To experienced geostatisticians: Be flexible! T-PROGS conceptualizes geostatistical mod-
els in a more interpretive framework than variogram-based geostatistical approaches. For
example, the transition probability models are related to concep®pbrtionsandmean
length as compared to the parameters of ‘sill” and ‘range’ used in variogram modeling.

To this end, T-PROGS is designed to appeal to geologists and geostatisticians alike.

The “Traditional” Approach

Consider that “traditional” geostatistics evolved from mining industry applications, where in-
tensively sampled data sets abound. In this respect, the implementation of traditional geosta-
tistical methods has adopted the following rather empirical approach:

1. Calculate values of a spatial statistic (usually the variogram) at regularly-spaced lags (sepa-
ration vectors).

2. Fit a mathematical function (e.g., spherical, exponential) through the variogram measure-
ments.

3. Implement various estimation (kriging) or simulation (sequential simulation, simulated an-
nealing) procedures.

Geologic or ‘subjective’ knowledge does not necessarily enter directly into this procedure.

In the application of geostatistics to other geologic disciplines involving more sparsely sam-
pled variables, such as permeability, the procedures are not as straightforward. In many geo-
logic applications, the parameter at the scale of interest is more conveniently interpreted in a
categorical framework, for example:
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e petroleum — lithologies indicating reservoir, source, trap, or non-oil bearing rocks

« hydrogeology- hydrofacies or hydrostratigraphic units indicating water-bearing zones (aquifer),
aquitard, or aquiclude materials

o mineral — classifications based on grade, degrees of mineralization, or specific mineraliza-
tion phases

‘Indicator’ geostatistical approaches were developed to address categorical applications, as
well as to provide ‘non-parametric” models for continuous variables (Journel, 1983).

In the practical application of either the continuous or categorical geostatistical approaches,
geologic data sets rarely provide the necessary detail to directly implement the empirical vari-
ogram curve-fitting procedure traditionally employedtf.data are too sparse (or the geology is
too complicated) to calculate meaningful variograms values, then how can one implement a geo-
statistical analysis? The usual advise is to infuse more understanding of the geology (e.qg., char-
acteristics of depositional systems, facies architecture, stratigraphy), for “...it is subjective in-
terpretation .... that makes a good model; the data, by themselves, are rarely enough...”(Deutsch
and Journel, 1992). However, the prevalent means for infusing geology into geostatistics has
been to obtain a ‘reference image’ or ‘training image’ (e.g. Deutsch and Journel, 1992, p.
119, 161, 189; Almeida and Journel, 1994, Goovaerts, 1996), a picture of the geology which
provides a surrogate for the exhaustive data set. With the training image at hand, the geosta-
tistician can then implement the usual empirical curve-fitting variogram modeling procedure.
However, not all applications are graced with a site-specific training image, particularly in 3-D.

Does this rule out the practical applicability of geostatistics to typically sparse geologic data
sets? Geostatistics seems to offer a promising tool for addressing uncertainty and scaling issues
that inevitably occur as aresult of sparse data and geologic complexity. How then can subjective
information be directly infused into the geostatistical modeling procedure?

The Transition Probability Approach

Some key answers to the problems of practical application of categorical (indicator) geostatis-
tics can be found by linking model parameters to basic observable attributes, which, for cate-
gorical variables, are:

volumetric proportions

mean lengths (e.g., mean thickness in the vertical direction)

juxtapositional tendencies (how one category tends to locate in space relative to another)
anisotropy directions

« spatial variations of the above

Inthis light, T-PROGS was developed to encourage infusion of subjective interpretation by sim-
plifying the relationship between observable attributes and model parameters. Understanding
the impacts of model parameters will improve conditional simulation results whether data are
abundant or sparse. The main simplification is to incorporate the transition probability instead
of the indicator cross-variogram as the measure of spatial variability. The transition probability
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t;x(h) is defined by

tjx(h) = Pr {k occurs at + h | j occurs atx } (1)

wherex is a spatial locatiorl is the lag (separation vector), and denote mutually exclusive

categories such as geologic units or facies. Indeed, the definition of the transition probability
is simple enough to put into words:

Given that a facieg is present at a locatior, what is the probability that another (or the same) fakies
occurs at locatiox + h?

or, schematically:

x+h

A
A

Pr{@}

\

The transition probability originates from the definition of@nditional probability

Pr{A andB'}
Pr{A} @

where ‘A’ would represent { occurs at:} and ‘ B” would represent § occurs atc + h}.

Pr {B'|A} =

Comparison to the Indicator (Cross-) Variogram

Traditional indicator geostatistics employs the indicator cross-variografh) bivariate sta-
tistic defined as

330(0) = 5B AL00) — Lx+ )] [Fe(x) — Tulx + )]} ©

where the indicator variablg (x) denotes

1, if categoryj occurs atk
L) =4 0, otherwise

The transition probability can also be defined with respect to indicator variables as

 E{;(x)Ix(x+h)}
L) = = )
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With analogy to a conditional probability (2), the indicator cross-variogtap could be
defined as

Yap = % [Pr{AandB} —Pr{AandB'} — Pr{A"andB} + Pr{A’andB’}] (4)

where ‘A’ would represent { occurs atc}, * A” would represent { occurs atc+ A}, * B’ would
represent g occurs atz}, and ‘B” would represent § occurs atz + h}. Although both the
transition probability and indicator (cross-) variogram measures carry similar statistical infor-
mation, the transition probability definitions (1) and (2) are simpler and, as will be demonstrated
in later examples, more interpretable than the respective indicator variogram definitions (3) and
(4).!

The transition probability approach further empowers the geostatistical method by consider-
ing all juxtapositional (cross-correlation) information, which has been otherwise considered te-
dious and impractical in the variogram approaches (Deutsch and Journel, 1992, p. 68-69, p. 82).
The transition probability allows for the possibility of asymmetry(h) # ¢,,(—h), whereas
the indicator cross-variogram assumes symmetgyth) = v;,(—h). Asymmetry would be
evident in a stratigraphic sequence that displays juxtapositional tendenciég of BC', such
as a fining-upward tendency, because the same sequence viewed in the reverse direction would
appear as’' BACBA. Considering that many geologic systems display asymmetries such as
fining or coarsening-upward tendencies, the transition probability can be a more informative
and diagnostic statistic than the indicator (cross-)variogram.

Markov Chain Analysis

Markov chains offer an interpretable and mathematically simple yet powerful stochastic model
for categorical variables. In time-series applications, the Markov chain model assumes, in
theory, thatthe future depends on the present and not the.paAsialogously for 1-D spatial
applications, the Markov chain assumes that spatial occurrences depend entirely on the near-
est data. The Markov chain model is appealing for geostatistical applications because it of-
fers straightforward means for developing “coregionalization” models to account for all spatial
cross-correlations.

Embedded Markov Chains

Most geological applications of Markov chains have employeelabeddedanalysis, in which

a matrix of vertical £)-direction transition probabilities afmbeddedoccurrences, i.e., from
onediscreteoccurrence of a facies to another, is considered (e.g., Carr and others, 1966; Krum-
bein and Dacey, 1969; Doveton, 1971; Miall, 1973; Ethier, 1975).

To illustrate the concept of an embedded Markov chain analysis, Figure 2 shows a vertical
succession of three categories, shy= white (sand),B = gray (Silt), C = black (clay), as

1 Indicator geostatistics can also be formulated in yet simpler statistical terms jojrtherobability defined ast {1, (z)I(z + h)} or
Pr {7 occurs atcand k occurs at: + h} (Carle and Fogg, 1996). However, the transition probability is more interpretable (as a conditional
probability) and has a long history of usage in the geosciences.
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3

2

embedded
occurrence

o

Figure 2. Diagram showing embedded occurrences of a three-category systelm=witthite, 2 = gray,
3 = black. Count of embedded transitions from categdty categoryl show to right of3 — 1 contact.

might be encountered in a borehole or a cliff face. To implement an embedded Markov chain
analysis, one must:
1. Forget about lag or spatial dependency and relative thicknesses of the beds.

2. Record the succession of ‘embedded occurrences,” that is, simply log each occurrence
of sand, silt, or clay in the vertical succession, which would might look something like:
ABCABACABCABABC.

3. Tally up the transition count matrix, which for the succession above would be

ot

1
3

W N
< |

The diagonal elements are blank because “self-transitions,” e.g. ftam A, are unob-
servable. That is, stacked beds of the same category are assumed not distinguishable from a
single bed. The ‘embedded occurrence’ term refers to the a discrete occurreficeloich

may consist of either a single bed or stacked beds.

4. Divide each row by the row sum to obtain the embedded transition probabilities.

— 0.833 0.167
0.40 — 0.60
1.0 0 —

One of the goals of MCMOD, the 3-D Markov chain modeling program in T-PROGS, is
to link the embedded Markov chain analysis to the developmeobwtinuous-lag(spatially
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dependent) Markov chain models. The reason this is important is that geologists are more
inclined to think and work in the embedded framework. In this example, there are no self-
transitions because stacked beds of the same category are assumed to be indistinguishable from
a single bed. It might be possible for geologists to distinguish individual beds associated with
discrete depositional events, and an embedded Markov chain analysis can be performed in that
context as well. However, for most data sets and practical applications, the self-transitions are
considered “‘unobservable.” In the context of modeling a flow system, whether the flow unit
consists of one massive bed or stacked beds of the same facies usually would not make much
difference.

A real example of an embedded Markov chain analysis is given by Ethier (1975), who com-
puted an embedded transition probability matrix for vertically successive occurrences of five
rock units in the Pigeon-Grotto section of the Banff Formation, Alberta, Canada as

— 0.087 0.391 0.326 0.196

tn -t 0357 — 0.143 0.0 0.500
T,=| : . : |=1]0643 0143 — 00 0214
ter o txx 10 00 00 — 00

0.364 0.318 0.318 0.0 —

where diagonal or “self” transitions are considered unobservable.

Spatial Markov Chains

A spatial dependency can also be incorporated into a Markov chain analysis. As such, Markov
chains can be used as geostatistical models of spatial variability.

Most geological applications of spatial Markov chains have considered vetjediréction
transition probabilities at a fixed sampling interval or “‘discrete lag,” 8. as shown in
Figure 2 (e.g. Krumbein and Dacey, 1969; Schwarzacher, 1969; Ethier, 1975). For the same
Pigeon-Grotto section above, Ethier (1975) computed a transition probability riréthik,, ) =
Pr{k occurs atc + Ah, | j occurs at:} for a 5-ft sampling interval as

0.63 0.11 0.0 0.04 0.22

ti(Ahy) -+ tig(Ah,) 0.16 0.48 0.04 0.0 0.32
T(Ah, =51t ) = : ; -1 1.0 00 00 0.0 00
t1(ARy) -+ txx(AR) 014 0 0.14 0.57 0.14

0.05 0.11 0.03 0.0 0.81

The diagonal entries represent the transition probabilities from one category to itself, and the
off-diagonal entries represent the transition probabilities from one category to another. As a
matter of basic probability theory the row sums in any transition probability matrix should
equal unity

K
d tiw(h)=1 V)
k=1
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Transition Probability

g P

o
o
=
[S)
-
o
N
)

Lag (grid units)

Measured Markov Chain

Figure 3. Matrix of transition probability measurements and models.

and, assuming stationarity, the column sums should obey

K
> pitiw(h) =pr  Vk
k=1

wherep; denotes the proportions or ‘marginal probabilities.” Furthermore, the transition prob-
ability “sill,” i.e. hlim t;k(h), will converge on the column category proportion

lim tjk(h> = Pk (5)

h—o0
for a stationary random field.

In one dimension, say along the verticglthe complete set of spatial auto- and cross-
correlations forK categories can be represented by & K matrix T'(h,) of transition prob-
abilities as a function of lag.

ti(h:) -+ tix(h)
tgi(hz) -+ tgxx(hs)

Thus, for a particular direction, T(h,) consists of a matrix of graphs representing transition
probabilities from one category to another or to the same category as a function of lag sepa-
ration, as shown in Figure 3 for the four-category system defined by Goovaerts (1996) from
the ‘true.dat’ data set given in Deutsch and Journel (1992). The transition matrix can be made
a function of a lagvector h = (h,, hy, h.) as well, thus enabling application of the transition
probability T'(h) as a measure of 2- or 3-D spatial variability.

In theory, the discrete-lag Markov chain model assumes that the spatial variability can be
characterized entirely by a transition probability matrix at a fixed lag interval, such as the 5-ft
transition probability matrix for the Pigeon-Grotto Section above. Mathematically, the Markov
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property is evident whe'(h) depends entirely otransition rates explained in more detail in
Chapter 6. In practice, geologic data do not conform exactly to mathematical or probability the-
ory, so that implementation and relevance of Markov chain models is not automatic. Nonethe-
less, the conceptual simplicity of Markov chains can facilitate and strengthen the application of
geostatistics by

e making practical the development of coregionalization models,

« illuminating the relationship between model parameters and spatial structure, thus providing
means for integrating geologic interpretation, and

e ensuring that the models of spatial variability are consistent with probability law.

Conditional Simulation

Conditional simulation is a process that creates multiple, equally probable spatial distributions
of random variables or ‘realizations’ that honor hard data at specified locations (Deutsch and
Journel, 1992, p. 117). Although (co)kriging may be used in the algorithms, conditional simu-
lation should not be confused with interpolation. From a geologic perspective, 2-D conditional
simulation of categorical variables, such as geologic units, can be viewed as a quantitative ap-
proach to the classic problem of drawing a geologic cross-section that realistically represents
geologic architecture between locations of control, such as outcrops or boreholes. In practice,
construction of a geologic cross-section requires a reconciliation of the available data with an
understanding of appropriate stratigraphic relationships in order to produce a plausible repre-
sentation of the geologic system. The same requirements should also hold true for producing a
geostatistical realization; the methodology should be able to reconcile patterns of spatial vari-
ability evident in the data and generate patterns of heterogeneity that are geologically plausible.
Otherwise, the realizations obtained, although equally probable, may be Imghigbable

Thus, the aim of conditional simulation, as illustrated in Figure 4 for the ‘true.dat’ data set ex-
amined by Goovaerts (1996), is to generate spatial distributions that honor hard data and exhibit
a realistic pattern of spatial variability.

Either a hand-drawn cross-section or a conditional simulation may serve as a representation
of geologic heterogeneity or, possibly, a template of hydraulic properties for flow and transport
modeling. Whereas the manual approach is sometimes feasible in 2-D, the 3-D situation re-
guires automated or computer-assisted methods. Yet automated methods should project some
degree of geologic insight that a geologist would subjectively infuse into a hand-drawn cross-
section. If a conditional approach can succeed in producing geologically plausible outcomes,
two distinct advantages over a manual approach emerge: (1) applicability to 3-D problems, and
(2) capability to produce an infinity of alternatives, thus providing a tool for assessing uncer-
tainty.

In the petroleum industry, 3-D conditional simulations may serve as building blocks for
‘reservoir models’ to evaluate efficiency and uncertainty in recovery schemes. Analogously in
hydrogeology, conditional simulations may prove useful for developing realistic aquifer system
models to evaluate impacts of heterogeneity on ground-water flow and contaminant transport.
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data
25 50
B 1 (40%)
I 2 (30%)
[[] 3 (20%)
[ ]4 (10%)

Figure 4. The concept of conditional simulation - to generate multiple “realizations’ that honor data and
exhibit a realistic pattern of spatial variability.
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Data must be placed in a specific format to run the T-PROGS programs. Two formats are used
exclusively, a ‘GEOEAS’ format for point, y, z, attribute(s)] data and a binary format for
grid (array) data.

GEOEAS

The *GEOEAS’ format, also employed in GSLIB, handles point data with a flexible ASCII
convention. T-PROGS uses this format for storing data locations and 1-D measured and mod-
eled transition probability values as a function of lag*.8asfilename suffix designation is
recommended to signify a GEOEAS-format file. For example, Figure 5 shows an example
GEOEAS-format data file excerpt which prescribbesy,andz locations and probabilities (in-
dicator values) for fourk = 4) categories as described in Table 1. The data from lifies K')

to END is read in by free format in all of the T-PROGS programs and, thus, may be stored in
various columnar formats.

Data consist of the, y, z locations in the first three columns aptbbability valueswhich
should range from zero to unity, in the last foutY columns. Thus, each data line records
the location and probability that one of the four categories occurs at the location (Figure 5).
If a datum is *hard,” indicating the absolute presence of the floodplain unit (category 2), the
probability values will consist of (0,1,0,0). This format leaves open the possibility of “soft’

Dat a

X = easting

y = nort hing

z = el evation above nmean sea |leve

debris flow
fl oodpl ai n

| evee

channel

2132.8 2487. 4 137. 07
2132.8 2487. 4 136. 77
2132.8 2487. 4 136. 47
2132.8 2487. 4 136. 17
2132.8 2487. 4 135. 87
2132.8 2487. 4 135. 57
2132.8 2487. 4 132. 27
2132.8 2487. 4 131.97
2576. 2 2695.5 186. 48
2576. 2 2695.5 182. 28
2576. 2 2695.5 181.98
2576. 2 2695.5 181. 68
2576. 2 2695.5 181. 38
2576. 2 2695.5 181. 08
2576. 2 2695.5 175.98
2576. 2 2695.5 175. 68
2576. 2 2695.5 175. 38
2576. 2 2695.5 112.98

1
2
3
4

OCOO0ORrROO0OO0O0O0O0O0ORFROOOO
PRPRPOROOOORRROORRREL
0000000000000
00000 RPRPPPOOOOO0000O

Figure 5. Example file showing GEOEAS format for storing data locations and probability values.
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Line Description

1 text describing the contents of the file or other relevant information

2 number of data columns=3 + K) for storingz, y, z locations and< data valuesg
3to(5+ K) text describing the contents of each data

(6 + K) to END | data:x, y, andz coordinates andk values associated with each data point

Table 1. Description of GEOEAS format for point data.

0.0668 0.5623 0.1883 0.1821
1

r—
Q
«Q

transition probabil
transition probabi
transition probabil
transition probabil
transition probabil
transition probabi
transition probabil
transition probabil
transition probabil
transition probabi

transition probabil
transition probabil
transition probabil
transition probabil
transition probabil
4 transition probabili

300
600
900
200
500
800
100
400
700

WNRPARWONRPRONRPARWONE

ity
ity
ity
ity
ity
ity
ity
ity
ity
ity
ity
ity
ity
ity
ity
ty

BERROOEEPYINEREEES

0000
0282
0529
0747
0896
1023
1102
1216
1437
1563

0000
0205
0397
0648
0951
1237
1450
1614
1817
2011

0000
0177
0325
0437
0517
0582
0625
0643
0648
0654

0000
8968
8061
7358
6824
6402
6131
5935
5809
5741

0000 ...
0430 ...
0787 ...
1046 ...
1261 ...

. 7942
. 6182

. 1571
. 2892
. 3897
. 4561
. 5042
. 5330
. 5461
. 5309
. 5195

1441 ...
1561 ...
1671 ...
1764 ...
1836 ...

NN RERROOOO
=
oooooooooo

cococoooooo
N
o S
© S
@ S
cocoooo0o0000
COLLOLooeee
COCoooLeoo0oo
COOO0Loo0R
COOOO00o0o

Figure 6. Example file showing transition probability data in GEOEAS format.

or uncertain probability values lying between zero and one and summing to one, for example,
(0.23,0.34, 0.07, 0.36).

The GEOEAS format is also used for the output of 1-D transition probability data files pro-
duced byGAMEAS andMCMOD . For example, the example file excerpt shown in Figure 6
contains transition probabilities in the vertica){direction computed blGAMEAS. To con-
form with the GEOEAS format, the transition probability files are generated as described in
Table 2. Again, programs such @RAFXX andMCMOD will read the transition probability
values in “free format,” so the user could provide data in other columnar forms. In all cases,
the GEOEAS header is expected.

Binary Grid

A binary format is used to compactly store arrays of values for the 3-D Markov chain models
generated byylCMOD and the 3-D conditional simulations generatedTi$iM . Although
the binary files do not provide direct access, there is usually no need to directly examine the
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Line(s) Description

1 proportions of thek categories

2 K? + 1, the number of data columns, which equéls+ 1 = 17 in the example]
3 text describing the ‘lag’

4to (4+ K?) text labeling the category transitions, i.e., th&™in ¢;;(h).

(5 + K2) to END | the lag and the transition probability values, cyclingkotimen;;.

Table 2. Description of GEOEAS format for storing 1-D transition probability data.

Line | Description

1 the number of dimensions in the array

2 the sizes of each dimension

3 the array values, stored in one continuous str¢gam

Table 3. Description of binary grid format.

contents of these files. The binary grid files are formatted as described in Table 3 whether
values are integer or real. For example, the array values ox& x 4 (z x y x z) = 24

node conditional simulation file generated B$IM would consist of a continuous stream of

24 integers (each representing the category number) cycling in orderyofz. Such a file
would appear as (if the binary were converted to text):

3
234
111334422223333111224444

TV
24 values

A 3-D Markov chain model'(h,, h,, h.) generated bMCMOD consists of dive-dimensional
array ofreal*4 (4 byte) values cycling om, y, z, j, k. These format details do not need to
be known to run the T-PROGS codes; they are given for informational purposes. However, the
following details should be noted for future reference:

e Using the binary grid option, the output froRSIM consists of 1-byte integer values, which
may range over [-128,127].

e A negativeconditional simulation value indicates a grid block wherein at least one con-
ditioning datum is present. For example, a negative simulation vak)esignifies that a
datum indicating categork is located within the grid block. A positive simulation value of
(+k), on the other hand, signifies that no data were present within the grid block, and that
categoryk was generated by the conditional simulation process.

ASCII Grid

The conditional simulation output files can also be generated in ASCII format to facilitate
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portability. The ASCII format is identical to the binary grid, except that the simulation array
values are written out with one value per line.
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The progranGAMEAS calculates bivariate (two-point) spatial statistics such as the (cross-)
variogram, (cross-) covariance, transition probability, or joint probab@&MEAS was mod-

ified from the GSLIB progranGAMV3 (Deutsch and Journel, 1992) to permit computation of
transition and joint probabilities and to produce output in the GEOEAS format. Before running
GAMEAS, the user must:

1. Prepare a data file in GEOEAS format as previously described in the data formats section.
2. Set up a parameter file.

3. Check the array dimension settings in the “include’ file calggineas.inc

Parameter File

Figure 7 shows an example parameter file for calculating vertical-direction transition proba-
bilities usingGAMEAS . The input format preserves conventions foun&iiMV3 (Deutsch
and Journel, 1992) as described in Table 4.

START OF PARAMETERS
dat a. eas linput file
/x,y,z colums
44567 Invar, varl,2,3,... colums|
-1, 2. /vmn, vmax
dat at pz. eas /output file
41 /# | ags
0. 3000 /'l ag spaci ng
0. 1500 /lag tol erance
1 I'ndir
0.0 90. 0.25 -90.0 22.50 0.25 laz, daz, azbw; dip, .., ..
16 /# of bivariate statistics
11 11 /i, k, 11=tp
12 11
13 11
14 11
21 11
22 11
23 11
24 11
31 11
32 11
33 11
34 11
41 11
42 11
43 11
4 4 11

Figure 7. Example parameter file for GAMEAS.
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C
5
D

Description

a dummy line of text which keys the beginning of the file with ‘STAR’
input data file name [formathar*40 |

columns numbers in data file containingy, andz locations of data

# of variables (categories), followed by column #'s in data file containing those varigbles
minimum “vmin” and maximum ‘vmax’ values used to screen extreme-valued data
output file name [formathar*40 ] for bivariate spatial statistics, e.glatatpz.eas
number of lags for which bivariate spatial statistics will be calculated

lag spacing

lag tolerance-distance allowance used for defining data pairs)

0 loop of ‘ndir’ directions (suggest keeping ndir=1)

azimuthal direction, tolerance, and bandwidth; dip direction, tolerance, and bandwidth
12 number of (cross-) correlations, which will Bé x K to obtain all the entries iT' (h)
13 to END | tail variable, head variable, index for type of bivariate statistic

2Ol 0 N[O O | W[IN| -

=
=

Table 4. Description of parameters for GAMEAS.

Implementation Notes

o Twelve types of bivariate statistics can be calculated, with 1 through 10 described in detail
in GSLIB by Deutsch and Journel (1992, p. 40-42):

1 = traditional variogram

2 = traditional cross-variogram

3 = non-ergodic covariance

4 = non-ergodic correlogram

5 = general relative variogram

6 = pairwise relative variogram

7 = variogram of logarithms

8 = power variogramu( = %): rodogram
9 = power variogramu( = 1): madogram
10 = indicator variogram

11 = transition probabilityw,—(iam; for data defined as indicator variablé5(z) =

I;(z)
12 = joint probability £ {V;(z)Vi(x + h)}

e As depicted in Figure 8, the azimuth angle is a clockwise rotation of the x-y plane, and
the dip angle is a counter-clockwise rotation of the y-z plane. Figure 9 shows how the lag
spacing, lag tolerance, angle tolerance, and bandwidth parameters are defined.
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Figure 8. Azimuth and dip angles.

/
lag tojerance

Include File

19

Figure 9. Lag spacing, lag tolerance, angle (azimuth or dip) tolerance, and bandwidth parameters.
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Include File

Output

The file gameas.incsets dimensions of arraysgameas.f If not familiar with the dimension
settings, the user should cheg&meas.ingreset dimensions (as appropriate to the application),
and recompilggameas.f

The output fronGAMEAS consists of a GEOEAS-format file such as the file of calculated ver-
tical transition probabilities shown in Figure 6. Note that a large record length will be produced
because each lag contains thiex K entries needed to describe the full transition probability
matrix.

GAMEAS will also produce a debugging file calleghmeas.dbghat contains diagnostic
information about the computed spatial statistics, as given alSAMV3 of GSLIB (Deutsch
and Journel, 1992, p. 53-60). This information includes lag number, mean lag distance, number
of pairs, and mean values for tail and head variables.
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GRAFXX plots amatrix of graphs, such as 1-D transition probability, cross-variogram, cross-
covariance, or cross-correlation matrix values as a function of lag. After calculating one-
dimensional transition probabilities usi®@AMEAS, it is recommended to graph the matrix

of measured transition probabilities usiBRAFXX before embarking on the development of

a spatial variability model. The graphs are useful for assessing data quality, interpreting jux-
tapositional relationships and trends, and preparing the implementation of the Markov chain
modeling procedures described in ChaptetGRAFXX is also used later to compare mea-
sured transition probabilities with Markov chain models.

Before implementingsSRAFXX, the user must

1. Generate one or more GEOEAS-format data files containing transition probability values
as a function of lag.

2. Set up a parameter file.

Parameter File

Figure 10 shows an example parameter file&G&AFXX as described in Table 5. The resulting
PostScript graphical output is shown in Figure 11. The number of lines will vary depending on
the number of input data files (line 4) and the number of categdfiés.g., line 10).

Implementation Notes

« If the flag on line 20 equals 1 (instead of zero), ther 4 = 16 (K?) text lines will be
expected below line 20 instead of tRe= 4 x 2 (K x 2) lines as presented in the example
of Figure 10.

o If any text lines are not needed, insert a blank line as presented in the example on lines 29
and 30.

e UseGRAFXX to plot other square matrices of graphs, such as the indicator cross-variogram
or joint probability.
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Measur ed

Mar kov Chain

/symretry check (1l=sym

/dx dy between plots (iInches)
/line at zero? l=yes
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for file 2 data
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Figure 10. Example parameter file for GRAFXX.
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Figure 11. Postscript graphical output produced by GRAFXX using the example parameter file.
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Line Description

1 a flag: 0 = display full matrix, 1 = show only lower triangle (if symmetric)
2 X,Y spacing in inches between each of the graphs (matrix entries)

3 aflag: 1 indicates put a horizontal line the ordinate (Y-axis) value of zero
4 number of input files (data sets)

5 1st input file name: e.g., a data file of vertical transition probabilities

6 line attributes, file 1. marker, width (72/inch), dash, and gray (O=black, 1=wh
7 2nd input file name: e.g., a Markov chain model

8 line attributes, file 2:

9 encapsulated PostScript output file narpe.eps

10 number of categories

11 X minimum, X maximum, Y minimum, Y maximum values for graphs

12 number of decimal places in X, Y labels

13 X, Y scales inunits per inch

14 data scale factor (multiplier)

15 axes gray level (0.0 = black, 1.0 = white)

16 X, Y label increments

17 X, Y tics per label

18 X axis title

19 Y axis title

20 flag: 0 = column-row (X-Y) titles; 1 = titles for each graph

21to 28| column 1, row 1, ..., column 4, row 4 titles

29 title, line 1

30 title, line 2

31 flag: 1 = plot legend

32 width of legend in inches

33 label for file 1 data

34 label for file 2 data

Table 5. Description of parameters for GRAFXX.

ite).
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Dash Code

The dash code (used in the line attributes for lines 6 and 8 in Table 5) specifies the type of dash
used in drawing a line that connects data.

0=

no dash

1to10=

dash size proportionate to numb

Marker Code

The marker code (used in the line attributes for lines 6 and 8 in Table 5) specifies the type of

marker used to plot a data point.

Code Result

0 line with no markers
negative| markers with no lineg|
positive | markers and line
+1 Cross

+2 diamond

+3 X

+4 box

+5 3-point star

+6 triangle

+7 5-point star

+8 pentagon

+9 6-point star

+10 circle

+11 sphere

+12 filled circle

If the marker code is zero (0), only a line connecting the data values is plotted. If the marker
code is negative, say (-10), the data values are plotted as circles with no connecting lines. If the
marker code is positive, say (+10), the data values are plotted as circles with connecting lines.
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MCMOD provides several means for generating 1-D and 3-D Markov chain models of spatial
variability. The Markov chain is an important theoretical model for cross-correlated categori-
cal variables. It has shown remarkable applicability to many categorical geological data sets,
particularly vertical stratigraphic successions. Three-dimensional Markov chain models are
generated itMCMOD by interpolating models for each of the principal directions, say,

andz or stratigraphic strike, dip, and vertical (upward).

Before running MCMOD, the user must:

1. Have a rudimentary understanding of the transition probability and Markov chain models.
2. Set up a parameter file.
3. Check the array dimension settings in themod.incinclude file.

4. If using option 2 (see below), prepare a GEOEAS-fortratsition probabilitydata file (as
calculated fromGAMEAS).

The resulting 3-D Markov chain file in binary grid format is used to prescribe the model of
spatial variability for the conditional simulation prograr8IM (Chapter 7).

Theory

Markov chain models applied to time series assume that the future depends on the present and
not the past. For a one-dimensional spatial application, a Markov chain model assumes that
an outcome at a specified location depends entirely on the nearest datum. A three-dimensional
Markov chain model assumes that spatial variability in any one direction can be characterized
by a one-dimensional Markov chain (Lin and Harbaugh, 1984; Politis, 1994). Although the
Markov chain is defined very simply in theoretical and mathematical terms, it has shown re-
markable applicability to characterization of spatial variability of facies (or hydrostratigraphic
units) in alluvial and fluvial depositional systems (Carle and Fogg, 1996; Carle 1996; Carle and
Fogg, 1997; Carle and others, 1998). Mathematically, it can be shown that the Markov chain
consists of linear combinations of exponential structures, although non-exponential-looking
‘Gaussian’ and “hole-effect” structures can be generated.

Matrix Exponential Form

Mathematically, a Markov chain model applied to one-dimensional categorical data in a direc-
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tion ¢ assumes aatrix exponentialform

T (hy) = exp (Ryhy) (6)

whereh,, denotes a lag in the directiaf) andR,, denotes a transitiorate matrix

Tie °° TiK¢
R¢ — . .
Tk1¢ " TKK®

with entriesr;; , representing the rate of change from categoiy categoryk (conditional to
the presence of) per unit length in the direction (Krumbein, 1968).

An eigenvalue analysisiwust be carried out in order to evaluatep (R,h,), because the
matrix exponential imot computed merely by computing the exponential of the matrix entries,
that is, ¢, 4(hg) # exp (rjrehe). Lettingh = hy andR = R, for notational simplification,
exp (Rh) is either approximated by an infinite series or, better yet, exactly determined by

K
exp (Rh) :Z exp (Aih) Z;
i=1

where)\; andZ; denote the eigenvalues and spectral component matrices, respectiely, of
The mathematical details are given in Agterberg (1974) and Carle and Fogg (1997) and Carle
and others (1998). One eigenvalue, 3ayis inherently zero and is associated with a spectral
component matrix having the proportions along each column. Thus, for a four-category system,
the continuous lag Markov chain model written out completely consists of

P1 P2 P3 Pa 2112 12,2 2132 2142
b1 P2 P3 Pa 2212 X222 2232 2242
exp (Rh) = (1.0) + exp(Az2h) (7)

b1 P2 P3 Pa Z31,2 X322 2332 2342

P1 P2 P3 Pa 2412 R422 R432 2442
11,3 12,3 13,3 14,3 2114 2124 2134 2144
21,3 2223 2233 2243 2214 2224 2234 2244

+ exp(Ash) + exp(Agh)

231,3 32,3 2333 <343 231,4 2324 R334 2344
241.3 42,3 2433 244,3 2414 2424 2434 2444

where thez,5; are coefficients of the spectral component matriéedetermined in the eigen-
system analysis. Thus, the Markov chain model for each ent(j) in T(h) consists of a
linear combinationof K — 1 exponential structures added to the column category proportion.
For example, in the four-category case given in (7)

tjk(h> = Dk + Zik,2 exp()\gh) + Zjk,3 exp()\gh) + Zjk,4 exp()\4h)
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Comparison to Discrete-Lag Form

Markov chain models are often formulated by the “discrete-lag” approach by successive mul-
tiplication of a transition probability matri’(Ah,) at discrete lag\h,,

T(1Ahy) = IT(Ahy)
T(2Ahy) = T(Ahg)T(Ahy)

: (8)
T(nAhy) = T(n — 1)AhyT(Ahy)

whereT(0) = I. The discrete-lag approach generates transition probabilities at only discrete
lag multiples1Ahg, 2Ah,, ..., nAhy. However, any discrete-lag Markov chain can be con-
verted to a continuous-lag Markov chain by computing

In [T(Ahy)]

Ry = Ah, 9)

which involves an eigensystem analysis (Agterberg, 1974; Carle, 1996; Carle and Fogg, 1997).

Eigensystem Analysis

MCMOD performs an eigensystem analysis because development of a continuous-lag Markov
chain as a geostatistical model of spatial variability may require the following mathematical
calculations:

o evaluate thenatrix exponentiafform of Markov chain given by (6),

« evaluate thenatrix logarithmof a transition probability matrix given by (9), and

e convert a discrete-lag Markov chain to a continuous-lag Markov chain by combining (6)
and (9).

As shown above, (6) and (9) cannot be computed directly from the matrix entries. In either
situation, the key step is to find the eigenvalueRgfor T'(h,), which can be computed using
codes for real general matrices as given by Smith and others (1976) or Press and others (1992).

For notational simplicity, let lag = h, andR = R,,. A square  x K) matrix such aR
can be expressed in diagonal form with respect to its eigenvalues by

K
R =) \NZ (10)
k=1

where the\, for k = 1, ..., K denote the eigenvalues Bf, andZ, denotes a spectral compo-
nent matrix associated with each eigenvalye The spectral component matricég can be
determined directly from the eigenvalues and maRiby

_ m#h _
Zy = S k=1,..,K (11)

m#k
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wherel denotes the identity matrix. The continuous-lag Markov chain (6) then can be computed
from

T (h) =) _ exp (\h) Zs (12)

k=1
through application of Sylvester's theorem (Agterberg, 1974, p. 406-412). The value of one
eigenvalue ofR will be zero, and the remaining eigenvalues will be negative (to ensure the
negative diagonal transition rates). Recognizing that (12) represents a canonical (i) pf
two useful conclusions can be drawn for the Markov chain model:

1. The eigenvalues(h) of T'(h) relate to the eigenvalues, of R by

9k<h) = exp ()\kh) or A\, = n

Vi=1,.. K (13)

2. BothR andT(h) have identical spectral component matriZgs

As a result, if a Markov chain model is assumed, a transition probability ni&tex:) for
a discrete lag\h can be used to compuRe by applying (13) to (10) to obtain

(14)

wheref,(Ah) andZ; are the eigenvalues and spectral component matrices, respectively, cor-
responding tal'(Ah). Application of (14) to (6) yields

K
T(h) =)  Ox(AR)AZ,, (15)
k=1

which represents a continuous-lag version of the more commonly used discrete-lag Markov
chain model (8). The clear advantage of (15) over (8) is the continuous functional representa-
tion of the model, that is, the ability to calculdd& /) at anyh, not just integer multiples of

Ah. Expression (12) shows that a Markov chain model corresponds to a linear combination of
exponential functions. Nonetheless, rather nonexponential looking structures can be obtained
from a Markov chain model, as evident in some of the off-diagonal transition probabilities for
the examples given.

Considering that one eigenvalueRf say )\, has a value of zero, the corresponding eigen-
valued, (h) of T'(h) has a value of unity for al. The entries of the spectral component matrix
Z, correspond to the proportign, of the column category such that

pP1r - PK
Z, = : :
b1 - PK

Considering (12) and that the other eigenvaluigs.., Ak are negative such th};aitm exp(Axh) =
0for k =2, ..., K, thenZ, establishes the sill of the Markov chain model as given by (5).
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Properties

The transition rate matrix has some important theoretical properties useful in model develop-
ment:

o The transition rate corresponds to tiepe of the transition probability as it approaches lag
zero
Ot(h — 0)

Ohy (16)

Tikp =

« The diagonal entries are negative;(; < 0), and the off-diagonal entries are (usually)
non-negativer, , > 0 VEk # j), which ensures thax < ¢;,.(h,) < 1.

« The diagonal entries;; s are related td_; ,, the mean length of categoyyin the direction

¢, by X
Tiie = TF (17)
j7¢
For example, the mean “thickness’ [mean length in the vertiepti{rection] of category
corresponds td,; ., so that a diagonal transition ratg . can be established by

1
Tjjz = _ijz
e The row sums must equal zero
K
> ik =0 Vj (18)
k=1

such that the diagonal entry is equivalent to the negative of the sum of the off-diagonal row

entries
K

Piie == > Tiko Vi
ki

K
which ensures tha} | t,.(hs) = 1 for all j, k according to probability law.
k£
e The column sums must obey

K
Z DTk =0 Vk (19)
j=1

which ensures that the transition matrix converges on the specified propottigis, —
o0) = pg, as expected for a stationary Markov chain.

Background Category

Probability law and knowledge of proportions can be exploite@MOD by specifying
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one category as “background.” Usually proportions are kn@ariori, such that the row and
column summing constraints (18) and (19) can be applied to eliminate the need to specify one
column and one row of transition rates. For example, in a four-category system, oflly- 9
transition rates need to be established insteald>oft = 16.

Multidimensional Markov Chains

2-D or 3-D Markov chain models can be developed by assuming that spatial variability in any
direction can be characterized by a 1-D Markov chain (Switzer, 1965; Lin and Harbaugh, 1984;
Politis, 1994). Although this may seem like a tenuous theoretical leap, the assumption here
is merely that Markov chains might characterize spatial variability not only in the vertical but
in other stratigraphic directions such as dip or strike. In a typical geologic application, data
coverage usually is inadequate to directly develop a 1-D Markov chain model for each of the
infinity of directions. Alternatively, model development can focus on the principal directions,
say the strike ), dip (y) and vertical £). Then 1-D Markov chain models for any direction

can be interpolated from the principal direction models.

Considering that the transition probability matiiiX/) for an arbitrary directio depends
entirely onR,, the interpolation of Markov chain models can be accomplished by ellipsoidally
interpolating entries in the transition rate matrices for the princtpalandz directions by

h 2 /h 2 /h 2
Tiks0 | = (h_wrjk,x) + <h—y7“jk,y) + <h—z7°jk,z) Vi, k # B (20)
¢ ¢ ¢

whereg denotes the background categary, »,, andh, are ther, y andz direction components
of hy = /h2 + hZ + hZ. The remaining entries iR, involving j or k = 3 can be determined
by applying (18) and (19). For the negative lag vector components; sayentries from the
rate matrixR _, corresponding to the opposite directierr are defined by

s = (pk) r
jk,—x — \ = kj,x
Dj

and used in (20) in place of entries f&;,, in accordance with the backward Kolmogorov
differential equation (Agterberg, 1974, p. 455-456).

The Determinant - A Measure of Statistical Closeness

The lateral extent of the 3-D Markov chain model outpuM@MOD must be finite, with lim-

its that consider statistical closeness. Kriging-based algorithms, which do not consider cross-
correlations, easily rank statistical closeness by the magnitude of the variogram (or covariance)
model or a prescribed search radius with anisotropy ratios. However, the ranking of a full
cross-correlation matrix for multiple categories is not so straightforward.

2 We make no claim that non-negative definiteness is guaranteed for the three-dimensional Markov chain models. However, 1-D non-
negative definiteness is ensured for each of the principal diregtimodels by maintaining real and non-positive eigenvalue®Rigr Our
experience has shown that the transition probability-based cokriging equations implemented in TPSIM, although singular, are solvable by
singular value decomposition.
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A ranking of statistical closeness is needed not onlMii@MOD , but also for the search
and simulated quenching algorithmsTiBIM (next chapter). A generalized method is needed
for the following reasons:

« Different categories will have different correlation lengths and anisotropy ratios.

o Experience has shown that users tend to undervalue lateral:vertical anisotropy ratios when
manually specifying degree of spatial continuity.

As such, T-PROGS utilizes a mathematically-based measure of statistical closeness, the
determinant.

The determinant of a transition probability matfiX#), is the product of its eigenvalues
Ox(h)
K
det [T(h)] :kl}l Ox(h)

For a Markov chain modeb;(h) = exp (Axh), where),, are thek = 1, ..., K eigenvalues of
the transition rate matriR. Considering that ong;, is zero and others are negative (for the
real part), then the non-zero eigenvalueRo@bey}}im 0, (h) = 0, such that

lim det [T(h)] =0

h—o0

At lag zero (. = 0) all eigenvalues of'(0) equal unity, such that
det [T(0)] =1
Therefore, for any lag vectadr
det [T(0)] > det [T(h)] > det [T(c0)]

and

1> det [T(h)] >0
which suggests thatet [T'(h)] can be used to rank the statistical closeness of two locations
separated by a lag vecthr A determinant value near unity indicates an strong correlation
between the two points, whereas as determinant value near zero indicates a lack of correlation.

In practiceMCMOD andTSIM utilize the(K — 1) root ofdet [T(h)] (the geometric mean
of the eigenvalues not associated with the sill) instead of the actual determinant. This reduces

dependency of the closeness statistic on the number of categories. Valdes|df(h)])%—
ranging between 0.1 and 0.01 are recommended as limits for the 3-D model.

Application

Development of a Markov chain model of spatial variability focuses on establishing the entries
7k, IN the transition rate matriR,. In straightforward mathematical terms, this can be viewed

as estimation of the slopegéj’“a(i’ﬂ (or tangents at the origin) for all entries,(hys) in the
¢
transition probability matrixT' (h,) .
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Selecting the Background Category

As stated above, application of the background category concept eliminates the need to specify
one row and column of transition rates. In general, the background category may be selected
according to geologic interpretation as the category that fills in the space not occupied by other
categories. For example, in a fluvial depositional system consistilagoéhanne] levee and

flood plain deposits, thélood plain facies would be a logical choice for background because it
has the lowest energy of deposition and, therefore, fills in accommodation space not otherwise
occupied by higher energy facies.

Choosing the Approach

MCMOD can generate one-dimensional Markov chains by either (1) direct quantitative means,
(2) estimation of%h:m corresponding to the slope of the transition probability as lag ap-
proaches zero, (3) direct fitting to data, or (4) interpretation of juxtapositional tendencies. As a

result, five different modeling approaches can be implementedM@MOD :

1. Transition Rates — Prescribe the actual transition rates.
2. Discrete Lag— Honor transition probability data for a particular (discrete) lag .

3. Embedded Transition Probabilities —Interpret transition rates relative to an embedded
transition probability matrix.

4. Embedded Transition Frequencies— Interpret transition rates relative to an embedded
transition frequency matrix.

5. Independence- Interpret transition rates relative to ‘independent” or ‘maximum entropy
(disorder)’ juxtapositional tendencies.

The choice of approach will depend on the particular application or style of interpretation.
The fact that many approaches are available exemplifies the flexibility of the Markov chain as
a model of spatial variability. Various modeling situations are given below, for which the most
conducive approaches are recommended.

Sparse Data

Most practical data sets yield noisy looking transition probability (or indicator cross-variogram)
measurements, particularly for the lateral directions. The traditional geostatistical model devel-
opment approach of empirical curve-fitting can easily lead to overcomplicated structures and
inconsistencies with mathematical and probability theory. Alternatively, the Markovian model
soundly addresses mathematical and probability theory while offering an interpretive frame-
work for defining model parameters. The assumption of a Markov chain may be viewed as
a conceptual simplification, that the spatial variability depends on values at nearest locations
(first-order stochastic). One can develop a Markov chain (first-order) model from parameters
conducive to integration of geologic insight: proportions, mean length, and juxtapositional ten-
dencies. Noisy data typically do not support a more complicated (higher-order) model, unless
supported by ancillary or interpretive information.
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Recommendation:

Embedded Transition Probabilities- Prescribe cross (off-diagonal) transition rates in terms of conditional
probabilities of embedded occurrences. For example, ‘Given an embedded occurrence of clay, what is the
probability that sand occurs directly above?” Prescribe auto (diagonal) transition rates by mean lengths.
Transition Rates - Infer the slope or fit (interpolate) the tangent line of transition probability curve as

lag approaches zero as per (16); these slope values directly translate to transition rates. Use this approach
in conjunction with the embedded transition probability approach (through examination of the debugging
file) to infer whether the prescribed transition rates are geologically plausible.

No Data

The Markovian framework is particularly conducive to development of models of spatial vari-
ability from conceptual information and, thus, is well-suited to situations lacking any data at alll.
For example, one can use geologic information or other insights on facies proportions, mean
lengths, and juxtapositional tendencies to establish a geologically plausible model of spatial
variability.

Recommendation:

Embedded Transition Probabilities - Prescribe cross-transition rates by estimating conditional proba-

bilities of embedded occurrences according to geologically plausible juxtapositional tendencies. Prescribe
auto-transition rates by estimated mean lengths.

Abundant Data

Given abundant data, the measured transition probabilities may display Markovian properties
and define a smooth curve (without scatter). This situation might occur for numerous, finely-
spaced data, such as continuous logs obtained from multiple boreholes penetrating the same
geologic system.

Recommendation:

Discrete Lag— Use transition probability data at one (discrete) lag to establish the model at all lags.
Transition Rates— Infer the slope of the transition probability as the lag approaches zero; the slope values
directly translate to transition rates as indicated by (16).

Interpretation Relative to Statistical Independence or Maximum Entropy (Disorder)

A main motivation for performing statistical analysis of bedding successions has been to quan-
tify interpretation of juxtapositional tendencies, to address questions such as, ‘Does siltstone
tend to occur above sandstone (versus claystone or conglomerate).” A standard is needed for
judging whether a juxtapositional tendency is greater or lesser than ‘random.” This can be
based on statistical ‘independence,” for which the frequency of occurrence of a pairs of events
depends on the product of the marginal frequencies of the two events. Theoretically, statistical
independence is identical to the maximum entropy concept, wherein a spatial arrangement of a
given number of categories exhibits a state of maximum disorder.

Recommendation:

Independence— Set cross-transition rates relative to the independent (maximum entropy) model. Set
auto-transition rates according to mean lengths. Use this approach primarily to interpret whether the data
or model exhibit significantly nonrandom juxtapositional tendencies.



34 Chapter 6 MCMOD

Transition Frequency/Count Data

The raw data used in an embedded Markov chain analysis consists of transition counts, for ex-
ample, the number of observations of siltstone occurring over sandstone. These values may be
normalized by the sum of the entire matrix to obtain transition frequencies, or the row sum to
obtain transition probabilities. Recall that transition frequencies, rather than transition prob-
abilities, are used in the assessment of statistical independence and, thus, represent a more
fundamental statistic.

Recommendation:
Transition Frequencies— Prescribe transition frequencies or counts for off-diagonal entries, mean lengths
for diagonal entries.

Direct Quantitative Interpretation

Transition rates can be interpreted directly in terms of a conditional rate of change per unit
length. The auto-transition rates are negative because the auto-transition probability at an in-
finitesimal lag is less than unity (the auto-transition probability at lag zero). Similarly, the
transition rates to other categories are usually positive because the cross-transition probabili-
ties at an infinitesimal lag are expected to be greater than zero (the cross-transition probability
at lag zero). Specifically;;;, , denotes, given an occurrencejothe rate at which transitions

to £ per unit length in a directiop. For example, ifj is very continuous in the directiop (5
possesses a very large mean length), will be negative and very small in magnitude, and
k6 TOr k # 7 will be positive but smaller in magnitude thap 4, particularly if & tends not

to occur adjacent tg. The summing constraint (18) maintains adherence to probability law by
prescribing that the auto-transition rates equal the negative of the sum of the cross-transition
rates.

Recommendation:
Transition Rates— Directly prescribe transition rates in terms of conditional rate of change per unit length

or by estimation of the slopeW (or tangents at the origin).
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Description of Approaches

1. Transition Rates

The transition rates are the entries , in R, of the equation describing a continuous-lag
Markov chain (6). The transition rates can be interpreted as the slope of the tangent of the
transition probability curve as the lag approaches zero, as indicated by (16). Thus, one approach
to developing a transition rate matrix would be to estimate the sl%g%ﬁ indicated by
transition probability data. For example, a 4-categasb(is flow, roodealn levee, channel
vertical transition rate matrix could be established as

_0.87 % 0.10 0.066
B * * * * _1
Ro=1 0030 % —123 o012 | M (21)
0.039 % 0.79 —0.82

by estimation of the slopeaé%:o) . Recall that row and column sumsRf;, should obey (18)

and (19), which can be achieved by employing the background category concept. The entries
for the row and column involving category 2, the background category, need not be specified.
Note that the diagonal entries are negative, and the off-diagonal entries are non-negative. To
avoid negative or above-unity probabilities, these sign conventions are recommended! Figure
12 shows the Markov chain model resulting from this transition rate matrix.

2. Discrete-lag Approach using Transition Probability Data at a Particular Lag

MCMOD employs an eigensystem analysis of (9) to establish a transition rate matrix from
transition probability data at a particular lag, whéxg, would be chosen within the range of
correlation. For example, the vertical{direction transition probability matrix

0.6182 0.2892 0.0529 0.0397
0.0325 0.8061 0.0787 0.0826
0.0192 0.3817 0.5258 0.0727
0.0168 0.0995 0.2359 0.6478

T(Ah, = 0.6 m) =

was used to compute the transition rates in (21) by (9) to obtain the model shown in Figure 12.

3. Transition Probabilities of an Embedded Markov Chain Analysis

An embedded Markov chain analysis evaluates the conditional probabilities of discrete occur-
rences of geologic units occurring adjacent to others in a particular direction (see Figure 2). For
example, thembeddedransition probabilities: ;; . in the vertical ¢) direction are defined as

ma3,. = Pr{levee occurs abové channel occurs belowy
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Figure 12. Matrix of transition probability data fit by Markov chain using discrete-lag approach at 0.6 m lag.

Consequently, an embedded transition probability mairj>could be constructed as

— 0803 0.124 0.073
0176 — 0.390 0.434
0.026 0.846 —  0.128
0.045 0.058 0.896  —

Note that auto (diagonal)-transitions are considered unobservable, thus, the diagonal entries are
absent. From an interpretive standpoint, note in (22) #hat >> 74, andmys , >> m49,,
which indicates thaeveetends to occur abovehannel

With the additional information of mean lengfh ., the entries of an embedded transition
probability matrix can be translated into entries in a transition rate matrix by
Tik,z
Tik, = = 23
gk, T (23)

j?z

The transition rates in (21) are related to the embedded transition probabilities in (22) by (23).
Thus, one approach to developing a transition rate matrix can be to (a) establish an embedded
transition probability matrix from either data or geologic interpretation of juxtapositional ten-
dencies, (b) establish mean lengths, and (c) convert the embedded transition probabilities to
transition rates by (23).

Note that the off-diagonal entries, . defined by (23) satisfy (17) and (18) because
K
Z Tik,z = 1
k=1

If a background category is assum#éte row and column entries involving the background
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Figure 13. Markov chain model fit to matrix of transition probability measurements by using option 3 to
adjust embedded transition probabilities. Markov chain model based on independent or “maximum entropy’
juxtapositional tendencies shown by dashed line.

category do not need to be specifi¢set them to zero). A reviseH, was established from
embedded transition probabilities and mean lengths by

Li,=115 % 0.12 0.075
*x * *x *
0.025 % Ls.=082 _ 0.10 (24)
0.04 * 0.96 Ly, =124

where the diagonal entries are converted to transition rates by (17), the off-diagonal entries are
converted to transition rates by (23), and category 2 is assumed as background (why row 2 and
column 2 entries are set to any number). The resulting Markov chain model shown in Figure
13 fits the transition probability measurements slightly better than the initial model shown in
Figure 12.

4. Transition Frequencies of an Embedded Markov Chain Analysis

An embedded Markov chain analysis may also be performed in terms of embedded transition
frequenciesf;; , defined, for example in the verticat)(direction, as

fa3.. = Pr{levee occurs above anchannel occurs belowy
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An embedded transition frequency matkix could be formulated as

(0.0841) 0.0677  0.0101  0.0063
0.0672  (0.3468) 0.1264  0.1713
0.0085  0.2971  (0.3395) 0.0340
0.0085  0.0000 0.2031  (0.2115)

F,—

where the diagonal entries (in parenthesis) are the row and column sums corresponding to mar-
ginal frequenciey; . of embedded occurrences of categpry

K K
fj,z :Z fjk,z :Z fk:j,z (25)

Py Py

With the additional information of mean lengih ., the transition frequencies can be con-
verted to transition rates by
fjk:,z

P = R k£ (26)
’ fj,zLj,z

Analogous to (24)MCMOD can establish the rate matrix from transition frequencies in
the off-diagonal entries by

L, =115 * 0.0101 0.0063
* L, =227 * *
0.0085 * L3, =0.82  0.0340
0.0085 * 0.2031 Ly, =124

Although off-diagonal entries for the background row and column do not need to be speci-
fied, this approach requires a mean length for the background categenause the marginal
frequencies depend on the proportions and mean lengths for all categories.

5. “Independent” or “Maximum Entropy” (Disorder) Transition Frequencies

The juxtapositional tendencies in a geologic system reflect some degree of order (or disorder)
in the bedding sequences. The disorder of the juxtapositional tendencies in a particular direc-
tion, say¢, can be quantified by the entropy, of bed-to-bed transition frequencigs. ,, the
probabilities that one bed occurs next to another, by

So ==Y firoIn fire (27)
7 k

(Hattori, 1976). Consider the question, *What would the bedding look like for a maximally dis-
ordered system?” From this state of reference, one might be able to judge whether the observed
bedding sequence exhibits nonrandom juxtapositional tendencies, that is, some prefarential
der.

In applyingembeddedViarkov chain analyses, geologists have been interested in quantify-
ing their interpretations of facies successions, particularly in the vertical direction. “Random’
or independent transition frequencies for a succession involving four categories of beds would



Application 39

obey

Nfi fife fifs fifa
fafi fafe fofs fifa (28)
fafi fafa fafs fafa
Jafr fafe fafs fafa

wheref; denotes the ‘marginal’ frequency that a bed of categiargcurs in the succession (the
directiong is implied for notational simplicity). However, the problem is not so straightforward

in practice. Usually, self-transitions (between two beds of the same category) are unobservable
(particularly from borehole data), so that not only the diagonal transition frequencies but also
the marginal frequencies cannot be directly evaluated. Off-diagonal transitioriscan be
estimated accurately, because transitions from one categodifferant category are observ-

able.

Assuming that self-transitions are unobservable, a more practical problem is posed. Instead,
one analyzes observations of off-diagonal transition frequengiesvhich are defined as the
transition counts divided by the sum total of all the off-diagonal transition counts

— T2 Ths Tha
M1 — Tz Ty
NM31 M2 — T3
Ny Mgz Mag —

Self-transitions are unobservable, so the diagonal entries are left blank. The objective of the
independent transition frequencies (Turk, 1979; Turk, 1982; Johnson and Pattie, 1993) is to find
the f;'s that satisfy

1 K K
7 ST Ffi=Y g Vi=1,., K (29)
J#i J#i
K K
whereT" => %" f.f;. The non-linear system of equations (29) can be solved by the method
i=1j#i
of iterative proportion fitting (IPF) (Johnston and Pattie, 1993; Carle, 1997a). The resulting
independent model will display the same marginal frequenciesrdfeddedoccurrences,,
where

K
m; :Z 771'3‘ VZ: 17"7K
#

JF£
The off-diagonal transition frequencies will be independent with respect to the estififated
Continuous lag Markov chain models can be linked to this model of independency by noting
thatn, is proportional to proportiong; divided by mean lengtlh; such that

Thus, given a set of proportions and mean lengths, a continuous lag Markov chain with inde-
pendent transition frequencies can be derived.

So a more specific question arises, ‘For the given proportions and mean lengths, what is
the transition frequency matrix that maximizes entropy as defined in (27) ?” It so happens
that the concept of statistical independence yields the same result as maximum entropy. The
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resulting independent or maximum entropy transition frequency iR corresponding
to the proportions and mean lengths of the previous examples is

(0.0841) 0.0377  0.0311  0.0152

F(Smax) _ 0.0377 (0.3671) 0.2196  0.1075
? ~ | 0.0311  0.2196 (0.3396) 0.0888
0.0152  0.1075  0.0888 (0.2115)

where the diagonal entries represent the row/column totals or marginal frequencies. This matrix
can be used as a basis for interpretation of juxtapositional tendencies relative to a maximally
disordered bedding succession for the same proportions and mean lengths. For example, if an

(S max)

observed transition frequendys . is greater tharf,; ., then one might conclude that there
is a statistical tendency féeveeto occur abovehannel

One can develop a transition rate matrix by (a) establishing proportions and mean lengths,
(b) computing the maximum entropy transition frequency manix ™ and corresponding
transition rates, and (c) interpreting the off-diagonal transition rates relative to the maximum
entropy transition rates. For example, applying (26), a maximum entropy transitia@iyﬁ?@
can be computed by

(S max)
(S max) fjk‘ z
Jk.z (S max
L.] z Z f] )

The vertical transition rate matrix (21) can be formulated relative to the maximum entropy

transition ratesé‘,f glax) as

§ _ S max S max Smax) |
i 1.80r(5 ™) 0.32r(5 ) 0.410(5 )
(S max — S max S max)
R(Smax) _ 1781} 21,2 : 32,2:21.27m 0.587’5372 ) 159 §4z 30
z - 0. 27 (Smax) 1.35r (S max) _ -1 0.45r (S max) ( )
31,2 732,z L3,,=0.82m T3y -

(S max (S max S max _
056 e 0,000 2 2,290 1 i

By this approach off-diagonal transition rates are established by multlpzlﬁlﬁx) by a co-
efficient: greater than unity indicates that the two categories tend to occur next to each other;
lesser than unity indicates that the two categories tend not to occur next to each other.

The maximum entropy concept is particularly useful for interpreting juxtapositional ten-
dencies of an existing Markov chain model. For example, one can take the proportions and
mean lengths established by the existing model, say (21), then generate a Markov chain model
with maximally disordered juxtapositional tendencies for those mean lengths and proportions
(which establish the marginal frequencies of embedded occurrences). Comparison of transi-
tion probability measurements with the maximum disorder model can then be used to interpret
whether the stratigraphy exhibits some degree of order in the juxtapositional tendéthCies.

MOD can be used to establish the maximum entropy Markov chain model, shown in Figure 13,
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for the given proportions and mean lengths in the previous examples by specifying for option 5

L. =115 1.0 1.0 1.0
1.0 Ly, =227 1.0 1.0
1.0 1.0 Lz, =0.82 1.0
1.0 1.0 1.0 Ly, =124

where setting the off-diagonal coefficients equal to unity yields the maximum-entropy transition
rates.The mean length must be specified ddr categories including the background category

The symmetric three-category caseln the special case of three categories with an as-
sumption of symmetry, the maximum entropy system of equations reduces to 3 equations (the
row/column summing constraints) and 3 unknowns (the symmetric off-diagonal transition fre-
guencies). Therefore, the juxtapositional tendencies will always appear as ‘maximum entropy’
for the given proportions and mean lengths. This situation illustrates the possible conflict be-
tween geological and statistical interpretations of maximum disorder. For example, consider
a system with three facies: channel, levee, and a large proportion of floodplain deposits. A
geologist would expect that levee deposits tend to occur laterally adjacent to the channel de-
posits and not haphazardly throughout the floodplain. Conversely, the location of the levee
deposits could be viewed as tending to occur laterally adjacent to the floodplain deposits. If
the levee deposits did in fact occur haphazardly throughout the floodplain, the effect would be
to reduce the mean length of the floodplain deposits, i.e. the floodplain deposits would be less
laterally extensive. Thus, in a geologic interpretation of the relative disorder of juxtapositional
tendencies, one may also need to make comparisons of entropy allowing for one or more facies
(particularly the background category) to vary in mean length.

Parameter File

The parameter file foMCMOD consists of four parts: (a) parameters common to the 3-

D model, (b) parameters describing thalirection model, (c) parameters describing the
direction model, and (d) parameters describing:zturection model. The formats describing
eachx, y, z-direction model are identical. Figure 14 shows an example parameter file for a
four-category application using options 1 and 2. The parameters are described in further detalil
in Table 6. Figure 15 shows another example parameter file using options 3 and 4.
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C
5
D

Description

number of categories

proportions for each category (should add up to unity!)

background category (highly recommended, but can be set at zero if not use

)

file name for debugging file

file name for 3-D Markov chain model produced in binary grid (.bgr) format

file name for determinant file used laterTi8IM to determine statistical closene

x,y, z lateral extent of 3-D model in terms of determinant

x,y, z lag spacing for 3-D model (same as for conditional simulatioif $iM )

OO N[O O | W[

z-direction output file name for 1-D Markov chain model

[y
o

z-direction number of lags, lag spacing

=
=

z-direction modeling approach (option 1 in this example)

=
N

row 1 entries fore-direction transition rate matrix

=
w

row 2 entries forr-direction transition rate matrix

[EEN
IS

row 3 entries fore-direction transition rate matrix

=
(6]

row 4 entries forr-direction transition rate matrix

[N
(ep]

y-direction output file name for 1-D Markov chain model

=
~

y-direction number of lags, lag spacing

[N
[o¢]

y-direction modeling approach (option 1 in this example)

[y
[{e]

row 1 entries fory-direction transition rate matrix

N
o

row 2 entries foy-direction transition rate matrix

N
=

row 3 entries for-direction transition rate matrix

N
N

row 4 entries foy-direction transition rate matrix

N
w

z-direction output file name for 1-D Markov chain model

N
N

z-direction number of lags, lag spacing

N
ul

z-direction modeling approach (option 2 in this example)

N
o]

transition probability data file

N
~

lag number for developing Markov chains from transition probability data

Table 6. Description of parameter file shown in Figure 13.

4 /# of categories
0.066 0.565 0.190 0.179 / proportions
2 I background cat egory
../llnl/tp/mcnodl_2. dbg /' name of debugging file
../1nl/tp/tpxyzl_2. bgr /output file for 3-D nodel
../l Inl/tp/detl_2.bgr loutput file for determ nant
0.05 0.05 0.05 /determinant extent for 3-D nodel
3.0 10.0 0.30 /dx, dy,dz for 3-D nodel
. Inl/tp/ 11 nltpxml_2. eas I/ X-direction output file
200 1. I/ X-Direction: # |ags, spacing
1 /option: 1=r,2=d, 3=etp, 4=etf, 5=i
-0.125 0. -1. -1, /row 1 transition rates
0. 0. 0. 0. /row 2 transition rates
0.0042 0. 0.167 -1. /row 3 transition rates
0.004 0. 0.084 -0.100 /row 4 transition rates
.1 Inl/tp/llnltpyml_2. eas /Y-direction output file
200 2.5 /Y-Direction; # |lags, spacing
1 /option: 1=r, 2=d, 3=etp, 4=etf, 5=i
-0.042 0 0. 0036 0.0022 /row 1 transition rates
0.0 0. 0. 0. /row 2 transition rates
0.0013 0. -0.050 0.016 /row 3 transition rates
0. 0008 0. 0.017 -0.020 /row 4 transition rates
. Inl/tp/llnltpzm_2. eas /Z-direction output file
200 0.1 /Z-Direction: # |lags, spacing
2 /option: 1=r, 2=d, 3=etp, 4=etf, 5=i
../ Inl/tp/11nl 1195t pz. eas /data file
2 11 ag#

Figure 14. Example parameter file for MCMOD using options 1 and 2.
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4 /# of categories

0.066 0.565 0.190 0.179 / proportions

2 / background category

../l Inl/tp/ mcrod3_4. dbg /' nanme of debugging file

../ Inl/tp/tpxyz3_4. bgr /output file for 3-D nodel
../llnl/tp/det3_4.bgr /output file for determ nant

0. 05 0.05 0.05 /determ nant extent for 3-D nodel
3.0 10.0 0.30 /dx, dy,dz for 3-D nodel

.. I1Inl/tp/llnltpxnB_4. eas I/ X-direction output file

200 1. /X-Direction: # |lags, spacing

3 /option: 1=r, 2=d, 3=etp, 4=etf, 5=i
8.0 0. -1. -1. /row 1 enbedded tp's & m’'s

0. 0. 0. 0. Irow 2 T

0. 025 0. 6.0 -1, /row 3

0.040 0. 0.84 10. /row 4 v

.1 Inl/tp/l1nltpynB_4.eas /Y-direction output file

200 2.5 /Y-Direction; # |lags, spacing

4 loption: 1=r,2=d, 3=etp, 4=etf, 5=i
24. 0. -1, -1, /row 1 enbedded tf's & nm's

0. 62.81 0. 0. Irow 2 e

0.0095 O. 20.0 - 1. /row 3

0.0058 0. 0.1208 50. /row 4 i

.1 Inl/tp/llnltpznB_4. eas /Z-direction output file

200 0.1 /Z-Direction: # |lags, spacing

3 /option: 1=r, 2=d, 3=etp, 4=etf, 5=i
1.15 0. 0.12 0.075 /row 1 enbedded tp's & ni’'s

0. 0. 0 0. Irow 2 v

0.025 0. 0.82 0.10 /row 3

0.04 O. 0.96 1.24 /row 4

Figure 15. Example parameter file for MCMOD using options 3 and 4.

Implementation Notes

Line 3 — If the background category is not used (set at zero), a 3-D model will not be
produced.

Line 6 — The determinant is the product of the eigenvalues. For a Markov chaiff (0)] =

1 anddet [T(c0)] = 0. In general, try values ranging from 0.01 to 0.1 — the smaller the num-
ber, the greater the lateral extent; the greater the lateral extent, the larger the array size for
the 3-D transition probability model, which, as stated earlier, fizsedimensional array.

The actual array size will depend on the Markov chain model parameters (primarily mean
length) and lag spacing (line 7).

Line 7 — Anticipate thaf SIM will assume the lag spacing of the 3-D Markov chain model

is the same as the grid spacing for generating the realizat/d@MOD runs fast, so re-
runningMCMOD with revised lag spacing is easily performed by editing line 7 as needed,
without changing any other parameters. One should consider that reducing grid spacing in
the conditional simulations will necessitate increased array size for the 3-D Markov chain
model. The determinant limit specification takes care of this adjustment automatically.

1-D files— The 1-Dz, y andz-direction model files are produced independently of the 3-D
Markov chain model. Thus, very small lag spacings can be prescribed for the 1-D models,
which are useful for graphing the models as continuous functions.

Option 2 — If an option other than ‘2’ is chosen in line 25 as given in Table 6, the input
format would replace lines 26-27 with fouk( lines describing the parameters of each row
of the transition rate matrix.

Options 3 through 5— These options permit establishment of the transition rates by more
interpretable methods than options 1 and 2. In each of these optionsagjomal transition
rates will be established indirectly by prescribing valuemefin length
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e Background Category— The background category concept eliminates the need to specify
entries in the background category row and column, except for the diagonal (mean length)
entry in options 4 and 5.

e Symmetry— One can enforcgymmetryin opposing pairs of off-diagonal transition rates by
setting oneof the opposing entries equal to negative unity (-1.0). Thus, if all juxtapositional
tendencies are assumed symmetric, one can focus on establishing transition rates for either
the lower or upper off-diagonal entries; the opposing off-diagonal entries can all be set to
-1.0.

Include File

Output

The file mcmod.incis used to set the dimensions of arrays usedl@MOD . If not familiar
with the dimension settings, the user should chacknod.inc, reset dimensions (if necessary),
and recompilencmod.f(or).

The output files oMCMOD are a 3-D Markov chain model (line 5), which consists of a 5-D
array stored in the binary grid format, and a 3-D grid of determinant values (line 6). These two
grid files are used by SIM for conditional simulation.

The one-dimensional, y, andz-direction Markov chain model output files for (lines 9, 16,
and 23) are generated independently of the 3-D model to enable interpretation and comparison
with transition probability measurements along principal directions. Itis recommended to gen-
erate the one-dimensional models at small lag spacings (usually smaller than the grid spacing
of the 3-D model) in order to adequately display the continuity of the Markov chain model.

Debugging File

After runningMCMOD , one should check the debugging file because it provides useful diag-
nostic information on the principal-direction and 3-D Markov chain models as follows:

e options used

e actual transition rates

« transition rates in terms of the more interpretive frameworks of options 3 through 5.
o eigenvalue and spectral component matrices

e 3-D model size and dimensions

This information is particularly useful for interpretation of juxtapositional tendencies and
for making adjustments to the model.

Model Adjustments

One might develop an initial model using options 1 or 2, then refine the model using the
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debugging output to help initialize the application of the other more interpretive options.

Negative Off-Diagonal Transition Rates

It is important to check fonegativeoff-diagonal transition rates, for which the debugging file

will include a warning message. Negative transition rates are likely to occur in a background
row or column as a result of a strongly positive juxtapositional tendency at another entry. Al-
though negative transition rates will surely lead to negative off-diagonal transition probabilities
at very small lags, it is possible that the off-diagonal transition probabilities at the discretization
of the 3-D model (and realizations) will remain positive. Thus, negative transition rates may
be acceptable in some situations; however, this presents a problem for the 3-D Markov chain
model interpolation scheme unless, the same entries are negative for all principal directions or
the negative rates occur only in the background row or column.
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Theory

TSIM

Once the 3-D transition probability model and determinant grid files are establishd€by
MOD, it is a relatively simple to generate a conditional simulation u3iSgMV .

Data in the GEOEAS format, such as the data file originally used to calculate transition
probabilities InGAMEAS, may “condition” the simulations. Variations in azimuthal and dip
directions of anisotropy can be incorporated by providangriori grids of azimuth and dip
angles.

The primary advantage @iSIM over other geostatistical algorithms is the incorporation of
all of the bivariate statistics (cross-correlations) in the simulation process, which enables repro-
duction of juxtapositional relationships including asymmetric patterns such as fining-upward
tendencies (Carle and Fogg, 1998).

Before runningl' SIM, the user must

1. Generate 3-D transition probability model and measures of closeness (e.g., determinant), as
produced byMCMOD .

2. Set up a parameter file.

3. Check array dimension settingstgim.inc.

TSIM generates conditional (or unconditional) simulations through a two-step procedure of:

1. Generating an “initial configuration” using a cokriging-based version of the sequential in-
dicator simulation (SIS) algorithm (Deutsch and Journel, 1992).

2. Iteratively improving the conditional simulation in terms of matching simulated and mod-

eled transition probabilities by applying the simulated quenching (zero-temperature anneal-
ing) algorithm.

The two steps are mutually dependent because the SIS step alone will not yield stochastic
simulations that adequately honor the model of spatial variability, and the quenching step will
not succeed without a rudimentary initial configuration. Both the SIS and quenching steps
may rely on the same Markov chain model of spatial variability and, thus, are conducive to
implementation in succession.
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Sequential Indicator Simulation

The initialization step utilizes the sequential indicator simulation (SIS) algorithm described
by Deutsch and Journel (1992, p. 123-125, p. 148), except that a transition probability-based
indicator cokriging estimate is used to approximate local conditional probabilities by

N K
Pr {k occurs aty | i;(xa); @ = 1,..., Ny j = 1, , K} &3 Y ij(Xa) Wik

a=1j=1

whereN is the number of datals is the number of categories,;; , represent a weighting
coefficient, and;;(x,) represents the value of an indicator variable

1, if category; occurs atk,

1j(%a) ={ 0, otherwise =1 K

The transition probability-based cokriging system of equations (Carle, 1996; Carle and Fogg,
1996) for computing the weighting coefficients is

T(Xl — Xl) s T(XN — Xl) W1 T(XO — Xl)
T(Xl - XN) tee T(XN - XN) WN T(XO - XN)
where
Wil,a *°° WiK,«
W, =
WK1, " WKK,o

Use of cokriging instead of the traditional indicator kriging approach improves consideration
of spatial cross-correlations.

Simulated Quenching

Starting from a SIS-generated initial configuration, the simulated quenching step is imple-
mented to improve agreement between measured and modeled transition probabilities. The
guenching step attempts to solve the optimization problem of

min {O :ZZZ tie(hy) s — tjk:(hl>MOD]2}

=1 j=1 k=1

where ‘O’ denotes an objective function, the denotd = 1, ..., M specified lag vectors, and
‘MEAS’ and ‘MOD’ distinguish measured and simulated (measured from the realization)
transition probabilities, respectively (Aarts and Korst, 1989; Deutsch and Journel, 1992, p.
159-160; Deutsch and Cockerham, 1994; Carle, 1997b). The simulated quenching algorithm is
implemented by repeatedly cycling through each nodal location of the conditional simulation
and inquiring whether a change to another category will re@udaéso, the change is accepted.

This iterative improvement procedure continues untis minimized, or a limit on the number

of iterations is reached. Conditioning is maintained by not allowing changes of categories at
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conditioning locations. “Artifact discontinuities” (Deutsch and Cockerham, 1994) are avoided
by generation of the initial configuration and including consideration for anisotropy and limiting
the number of lags in formulation of the objective function (Carle, 1997b).

Application

The conditional simulation procedure is somewddhocbecause it employs approximations

and localized optimization schemes, not exact mathematical procedures. In other words, the
simulation procedure remains somewhat of an ‘art.” Nonetheless, the art involved permits
considerable flexibility and potential for generating useful simulation results.

In runningTSIM two important parameters affect both execution time and the nature of the
simulation result:

o number of data used in the cokriging equations (for the SIS step)
e determinant limit, which controls the number of quenching lags.

Execution time in the SIS step is roughly exponentially proportional to the number of data
used in the cokriging equations. More cokriging data tend to produce more intricate heterogene-
ity patterns. Experience has shown that four to twelve data usually produce desirable results,
with less data favored to reduce execution time for applications with very large grids and large
numbers of categories. An even number of cokriging data is recommended because odd num-
bers (say three or five) may produce artifactual features as a result of a systematic asymmetry
in the data configuration.

For the quenching step, execution time is roughly linearly proportional to the number of
guenching lags. More quenching lags does not necessarily yield better results. Artifactual re-
sults, particularly near conditioning and edge locations, can be caused by over-emphasis on
fitting the simulated spatial variability to the model at large lags (Carle, 1997b). In general, itis
recommended to choose a determinant limit that ensures coverage by quenching lags in all prin-
cipal directions [e.g. lags with grid spacings of (1,0,0), (0,1,0), and (0,0,1)] and a reasonable
number of non-major directions [e.g., (1,1,0), (1,0,1), etc.], without an excess of redundancy
[e.g., (1,0,0),(2,0,0),...,(10,0,0)]. Exact specifications for determining a suitable determinant
limit cannot be given because this depends on the particular transition probability model and
grid spacing. In practice, a reasonable determinant limit can be chosen by mapping the de-
terminant grid. Otherwise[SIM contains an internal check. If the determinant limit is too
large to encompass the smallest lag in a principal direction, say lag (1,0,0) fodilection,

TSIM will automatically lower the determinant. Thus, if too high a determinant limit is en-
tered, say 0.99I'SIM will determine the largest acceptable determinant limit — a default value.

In practice, one might start quenching with the default value, then compare quenching results
for successively lower determinant limits.

Parameter File

An example parameter file farSIM is shown in Figure 16, with parameters described in Table
7.
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veight

4 /' nunber of categories
0.066 0.565 0.190 0.179 / proportions
../1Inl/simsinxyz. bgr /output file
1 /output format: 1=binary, 2=ascii
1 / debuggi ng | evel
t psi m dbg / debugging file
4175 / seed
1 / nunber of sinulations
1966. 3 -60 3. / xcenter, nx+, xsiz
3023.5 -30 10.0 /ycenter, ny+, ysiz
142. 07 -60 0.3 |/ zcenter, nz+, zsiz
1 4 /ndmi n, ndmax
1 /i basi s: 0=cov, 1=t p
0. 001 /wratio
..I1Inl/tp/tpxyz. bgr /trans. prob. nodel file
..I1Inl/tp/det. bgr /determnant file
../llnl/data/llnl1195. eas /input data file
-50. -50. /azi muths: coord, true
1.5 1.5 /dip: coord, true
junkaz. bgr lazimuth int*1 file
j unkdi p. bgr /dip int*1 file
4 0.00001 -1 /maxit; tol; -1=weight, 1=l agl
0.4 / quenching determnant limt
Figure 16. Example parameter file for TPSIM.
Line | Description
1 number of categories
2 proportions
3 output file for grid
4 output format: 1=binary, 2=ASCII
5 debugging level: higher yields more information
6 debugging file name
7 seed for random number generator
8 number of simulations
9 2 minimum; number of nodes in direction;z node size
10 y minimum; number of nodes in direction;y node size
11 z minimum; number of nodes indirection;z node size
12 minimum and maximum number of data points used for cokriging estimates
13 basis function for cokriging estimates: 0=covariance; 1=transition probability
14 value for defining singularities in singular value decomposition (0.001 works fir
15 transition probability model file name (generatedWgMOD )
16 determinant file name (generated BMCMOD )
17 input data file name (GEOEAS format)
18 fixed azimuths: coordinate system; stratigraphic
19 fixed dips: coordinate system; stratigraphic
20 specified azimuth direction file
21 specified dip direction file
22 quenching parameters: max# of iterations; tolerance; 1= closest lags only, -1=\
23 determinant value prescribing spatial limit of quenching lags

Table 7. Description of parameters for TPSIM.
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Implementation Notes

Lines 3 and 8 Line 3 constitutes the root of the output file name. If multiple realizations
are requested by setting line 8 greater than one, then an integer signifying the realization
number will be appended to root of the output file name. For example, if line 3 = “simu-
lation.bgr’ and line 8 = 3", then the output realizations will be namsidhulation.bgrl,
simulation.bgr2, andsimulation.bgr3. A maximum of 100 realizations can be requested.

Lines 9-11 The coordinate system can also be specified relative toghter of the simu-

lated volume, rather than relative to the coordinate minima. The centered approach facilitates
model development in many applications because the center of a model is usually easier to
establish than the corners, particularly if the model coordinate system is rotated relative to
the data coordinate system. The centered approach can be implemented by speedying
ative numbers for the number of nodes relative to the center.

Line | Description

9 x center;negativenumber of nodes ig-z direction;x node size

10 y center;negativenumber of nodes ig-y direction;y node sizeentry
11 z center;negativenumber of nodes ir-z direction;z node size

Thus, if “-20” is entered for the number of nodes 4ar direction, the number of nodes in
thez-direction of the simulation will b& x 20 + 1 = 41, with z node21 centered at the
center.”

Line 13. The cokriging equations are actually solved using a basis function approach
(Carle, 1996). Selecting the covariance option implements simple cokriging, which will
de-emphasize trends in proportions (nonstationarity of the mean) in the simulation results.

Line 14. For more details about solving linear systems of equations with singular value
decomposition, see Press and others (1992, p. 51-63).

Lines 18-19 Set fixed values for coordinate system and stratigraphic azimuth and dip
directions, for example: (a) coordinate azimuth)°, stratigraphic azimutk- 0°; (b) coor-
dinate azimuth= 20°, stratigraphic azimutk: 0°; (c) coordinate azimutk: 0°, stratigraphic
azimuth= 20°; (d) coordinate azimuthk- 20°, stratigraphic azimuthk- 20°.

@ (b) (© (d)

Lines 20-21 Optional binary grid files of integer values containing loaaimuth direc-
tions rounded to nearest degree and ldgaldirections rounded to neardshth of a degree.
If not using these options, insert bogus file names. These grids must have identical dimen-
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sions as the simulation. This option enables generation of realizations with variable dip and
strike, as would result from structural features such as folds or geomorphic features such as
meandering or a radial pattern of deposition.

e Line 22. These are quenching parameters. No more than five quenching iterations are
usually necessary — too many iterations may produce unrealistic artifacts. If the number of
iterations is set at zero, then simulated quenching will not be performed. If the number of
iterations imegative then simulated quenching will be performed on existing realizations as
named by line 3. This feature is useful for examining different SIS and quenching schemes.
The tolerance limit sets a criteria for terminating quenching based on the value of the ob-
jective function as normalized relative to its initial value. The last parameter enables the
objective function to consider quenching lag vectors with components of no more than one
nodal spacing (set 1) or to weight quenching lags by the determinant value£setl).

o Redundant data. If more than one datum fall within a grid block, the simulation honors
the first datum encountered in the data file.

Include File

Output

The file TSIM.inc is used to dimension arrays @SIM. If not familiar with the dimen-
sion settings, the user should ch&&IM.inc, reset dimensions (if necessary), and recompile
TSIM.f(or) .

IMPORTANT! The three main 3-D arrays GiSIM consist of integer values prescribing
(a) the category at each node, (b) azimuthal direction angles rounded to nearest degree, and
(c) dip direction angles rounded to nearest tenth of a degree. To conserve memory usage, disk
space, and input/output time, these arrays have been declar&hhinc as 1-byte variables
instead of the default 4-byte type. The one-byte integers may range from -128 to 127. However,
theinteger*l  variable type is not an ANSI FORTRAN standard, although some compilers
(e.g., DEC and SGI) support it. In other cases (e.g., SUNgigal*1 variable type can
be used to store 1-byte integer values. Therefore, the user may need to customize the variable
declaration statement for the arragim , iaz , andidip in TSIM.inc. One can still use the
standardnteger*4 or, alternatively, ainteger*2 declaration.

Also, because 1-byte integer or logical variables types are not standard FORTRAN, the
binary ¢.bgr) files may not transfer across different computer systems.

The output froml'SIM can be produced in either ASCII or a compact binary formag&Mm
assigns negative values to any grid block with a category determined directly by conditioning
data, which facilitates highlighting and understanding of the impact of conditioning data.
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CHUNK displays conditional simulations produced B$IM in color or grayscale 3-D per-
spective using the PostScript graphical langu&}jdUNK expects a 3-D array of integer values

in the binary grid format, as produced B$IM . Display of the simulation may be broken apart
(exploded) into several sub-volumes (chunks), any number of which may be removed to reveal
internal architecture. Grid blocks that occur on the edge of the simulation, which are prone to
artifactual results, may be stripped away to reveal more representative surfaces.

Before runningCHUNK, the user must

1. Create a 3-D array of integer values in the binary grid format, such as a realization produced
by TSIM.

2. Set up a parameter file.

3. Check array dimension settingsahunk.inc.

Parameter File

Figure 17 shows an example parameter file@GstUNK , with parameters described in Table
8 and resulting graphical output shown in Figure 18.

Implementation Notes

e Line 4 — The option for 2, 4 or 8-bit graphics permits different numbers of possible col-
ors or grayshades. The possible number of grayshad®$isvherenbit is the number
of bits selected. Therefore, 2-bit graphics permits 4 grayshades, 4-bit graphics permits 16
grayshades, and 8-bit graphics permits 256 grayshades. The possible number of colors is
2(3xnbit) \which yields 64 for 2-bit, 4096 for 4-bit, and 16,777,216 for 8-bit. In general, 4-bit
graphics is more than adequate. Grayshade maps are more likely to need 8-bit graphics. If
the number of nodes is very large, 2-bit graphics might be useful for speeding up I/O, cutting
down file size, or dealing with an architectural limit in PostScript mentioned below.

e Line 5— Colorrgb (red, green, blue) values for background, axes, and title range from 0.0
to 1.0. A value of 1.0 denotes full intensity. For exampigy values are for red=(1., 0., 0.),
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Figure 17. Example parameter file for CHUNK.

LLNL Aquifer System

B debris flow
[] floodplain

[]levee
[ ] channel

Figure 18. Example PostScript graphical output from CHUNK.
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Description

1 page orientation: 1=landscape, portrait otherwise

2 X, y plot translation (inches)

3 X, Y legend translation (inches)

4 bits per pixel (2, 4, or 8); color=1, grayscale=0

5 red-greed-blue (rgb) color (0-1) for: background; title; and axes
6 binary grid input file name

7 # of chunks inx, y, andz direction

8 x,y, z spacing between chunks

9 # of chunks to crop (zero if none)

10 chunk #'s to crop (put dummy value if line nine is zero)
11 postscript output file name

13 # of categories (in ascending numerical order)=ncut
14 to 13+ncut | category and corresponding rgb values

14+ncut shading:zy, zz, andyz plane ( + to lighten, - to darken)
15+ncut x, y, andz minimum values for grid

16+ncut x, y, andz grid spacing

17+ncut # layers to crop imin, xmax,ymin, ymax, zmin, zmax directions
18+ncut x, y, andz scales (units/inch)

19+ncut x, y, andz label increment

20+ncut x, y, andz # of decimal places in label

21+ncut x, y, andz tics per label

22+ncut x title

23+ncut y title

24+ncut z title

25+ncut data scale factor

26+ncut Title line #1 (leave blank line if not used)

27+ncut Title line #2 (leave blank line if not used)

28+ncut transformation parameters a, b, ¢, andd= ax + cy; y' = bz + dy
29+ncut legend? 0=no, 1=yes

30+ncut # of categories (ncat) for legend; # rows, columns
31+ncut height and width of legend

32+ncut category #

33+ncut category label

34+ncut to end

(repeat format of two previous lines)

Table 8. Description of parameters for CHUNK.
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green=(0.,1.,0.), blue=(0.,0.,1.), yellow=(1.,1.,0.), cyan=(0.,1.,1.), and magenta=(1.,0.,1.).
Grayshades can be produced by settinggiil intensities equal with (0.,0.,0.)=black and
(2.,1.,1.)=white.

e Line 10- Numbering of chunks is based on order in which they are drawn, from lower back
left to upper front right, cycling by-z, —y, and+z.

e Lines 14 to 13+ncut— Grayshade andgb intensities are specified by integer values of
(1,2,3,4) for 2-bit graphics, (1,2,3,...,16) for 4-bit graphics, and (1,2,3,...,256) for 8-bit graph-
ics. These values are then scaled to intensities ranging from 0.0 and 1.0. If agrayshade image
is requested (second parameter in line 4 set to zero), only one value per line is needed (versus
three per line for color).

e Line 17+ncut- Use these settings to crop off layers on the outer edges of arealization. Edge
effects may mask more representative surfaces underneath.

e Line 28+ncut— Thea, b, ¢, andd transformation parameters used to create the quasi 3-
D perspective should maintairt + ¢ < 1 andb? + d? < 1 to preserver,y, z scaling
relationships.

o Architectural Limit —Note that Postscript contains an architectural limit of 65535 elements
in any array or string. What this means foHUNK is that garbled results will occur on any
face of a chunk that utilizes more than 262140 bits. One can get around this limitation by
dividing the image into more chunks and/or using less bits per pixel.

Include File

The file chunk.inc is used to dimension arrays GHUNK . The main array setting controls
the size of the grid that can be visualized. If not familiar with the dimension settings, the user
should checkchunk.inc, reset dimensions (if necessary), and recomghlenk.f(or).

IMPORTANT! CHUNK reads in the 3-D simulation array producedTfiM . Recall that
the variable type for the simulation array was set BIM.inc, so the corresponding variable
type for the 3-D array specified chunk.inc and read int@ HUNK must be the same! There-
fore, whether your system accem$eger*1l , logical*1 , or whatever, just make sure
that both thesim array inTSIM.inc and theivall array inchunk.inc are declared as the
same variable type.



9 PostScript Basics

Regular PostScript (*.ps) Files

The output files fronGRAFXX andCHUNK are produced in the PostScript (PS) graphical
language. Inevitably, the user will need or want to modify the graphical output. In many cases,
modifications can be made quite simply by editing the ASCII format PS*its). Some basic
properties which are useful for editing PS files are:

o Alltext strings are surrounded by parentheses. One can modify the text string by searching
for (finding) it, then modifying the text string within the parentheses.

e Onaline previous to a text string, a command suck3#s00 489.00 m designates the
X,Y page coordinates of the text string in 72nds of an inch. One can modify the coordinates
to move the location of the text string.

e« A command such ag2 144 translate will translate subsequent graphics in the file
by the X,Y page units specified.

e Acommandsucha®.0 2.0 scale will scale subsequent graphics by factors of 2.0 in
the X and Y page directions.

e The commandfindfont , scalefont , andsetfont find, scale andsetthe current
font.

Further details can be found in many reference texts such as the PostScript Language Ref-
erence Manual (Adobe Systems Incorporated, 1990).

Encapsulated PostScript (*.eps) Files

Although regular PS files can be directly interpreted by printers and on-screen viewers, they
usually are not readily incorporated into word processing or slide presentation programs. The
Encapsulated PostScript (EPS) format, however, is quite portable. The regular PSgggs (
produced by RAFXX andCHUNK can be converted to EPS filesdps) by adding necessary
header and footer information. This information can be added using the prpgeaps.f(or).

BoundingBox

The most important of the added EPS information is a *‘BoundingBox,” which specifies the
lower left andupper right X,Y corner coordinates of the plot in units of 1/72 of an inch. The
BoundingBox provides an opportunity to crop unneeded blank space surrounding the plot.
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si nqg. ps /postscript input file

si ng. eps /encapsul ated postscript file
77 251 548 583 / boundi ng box (in inches)
Steve Carle / creator

9/ 9/ 97 /date

3: 00PM /tine

Figure 19. Example parameter file for PS2EPS.

An obvious way to define a suitable BoundingBox is to print out the PS file, then measure
the displacements of the desired lower left and upper right corners relative to the lower left
corner of the page.

An easier way to define a BoundingBox is to employ the Ghostview previewer, which
displays PS or EPS files on screen. In the upper left corner, Ghostview tracks plot coordinates
in units of 1/72 of an inch whenever the Mouse-driven crosshairs are located on the screen view
of the plot. Thus, one can find suitable BoundingBox coordinates by moving the crosshairs to
the desired lower left and upper right corners.

PS2EPS

Theps2eps.f(or)program is implemented in the same manner as all other T-PROGS programs.
An example parameter file is shown in Figure 19, with parameters described in Table 9.

ine | Description

input PostScript file name

output Encapsulated PostScript file name
BoundingBox in 72nds of an inch: lower left X,Y: upper right X,Y
name of plot creator
date

time

OO B W

Table 9. Description of parameters for PS2EPS.



10 Examples

The following examples are given to help reinforce procedures for implementing T-PROGS.
For some, such working examples will provide the quickest route toward understanding how
to obtain results with T-PROGS.

GSLIB’s true.dat

Thetrue.dat data set in GSLIB provides a widely accessible “‘exhaustive’ data set that is use-
ful for testing geostatistical techniques. In applying an indicator cross-variogram-based geo-
statistical approach, Goovaerts (1996) dividerk.dat into four categories by cutoff values as
follows:

category 1 = second highest 40%
category 2 = highest 30%
category 3 = second lowest 20%
category 4 = lowest 10%

As such, the categories were treated as facies defining an intermediate scale of permeability
heterogeneity.

The goal of this example is to generate a 3-D realization having an isotropic pattern of spatial
variability similar to the 2-Dtrue.dat data set.

50 tdat
Il 1 (40%)
I 2 (30%)
) []3(20%)
[ ]4(10%)
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Step 1 — Put data into GEOEAS format

true.dat categorized by 0.15 0.44 and 2.12 cutoffs
7
X
y
z
1=2nd hi ghest 40%
2=hi ghest 30%
3=2nd | owest 20%
4=| onest 10%
1. 00000 1.00000 0. 0100
2. 00000 1.00000 0. 0100
3. 00000 1.00000 0. 0100
4. 00000 1.00000 0. 1000
5. 00000 1.00000 0. 0001
6. 00000 1.00000 0. 0001
7.00000 1.00000 0. 0010
8. 00000 1.00000 0. 0010
9. 00000 1.00000 0. 0010
10. 00000 1.00000 0. 0010
11. 0000 1.00000 0. 0010
12. 0000 1.00000 0. 0010

etc.

Step 2 — Calculate isotropic transition probabilities using GAMEAS

It is assumed that the pattern of spatial variability is isotropic and, thus, does not depend on di-
rection. The omni-directional statistics are computed by employing a large azimuth bandwidth
and an azimuth angle tolerance of slightly greater than 90

START OF PARAMETERS

../truel/truecat. eas linput file
123 /x,y,z colums
44567 /nvar, varl,2,3,... colums
-1. 2. /vmin, vmax
../ltruel/tp.eas /output file
5 [# | ags

| ag spacing

lag tol erance

ndir

az, daz, azbw; di p, ddi p, di pb
# of bivariate statistics
j,k, 11=tp

/
/
/
90.1 10000000. 0.0 22.50 0.25 /
/
/

(o2}
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Step 3 — Plot the transition probability data matrix using GRAFXX

Plot the transition probability data before proceeding to modeling spatial variability. The quality
of the data will influence the choice of modeling approach.
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0 /symetry check (1=sym)
0.20 0.20 /dx dy between plots (inches)
0 /line at zero? l=yes
1 I'nunber of input files
..l..ltruel/tp.eas linput file 1
-10 0.40 0 1.00 /file 1: marker, |lw, dash, gray|
..l..ltrueltp.ps loutput file
4 /' nunber of categories
0. 20. -0.1 1.0 I Xmi n, Xmax, Yni n, Ymax
01 I# of X Y deci mal places
15. 0.825 /X, Y scal es (units/inch)
1.0 /Data scal e factor
0.0 /axes gray |evel
5. 0.5 /X, Y | abel increnents
5 5 IX Y tics per |abel
Lag (grid units) IX title

1Y title
0 /1= titles for each plot
1 /X title variable 1
1 /Y title variable 1
2 /X title variable 2
2 /Y title variable 2
3 /X title variable 3
3 /Y title variable 3
4 /X title variable 4
4 /Y title variable 4

Ititle, line 1
Transition Probability Ititle, line 2
1 /1=pl ot |egend
6.5 /width of I'egend (inches)
Measur ed /nane of variable

Transition Probability

1 2 3 4
- B
rrrprererrerprer e e e
o E E =
e e e e
L) E . . =
o Jr | e e g
< 054 4.
0‘0;. R
L R B e B e
0 5101520

Lag (grid units)

Step 4 — Model spatial variability using MCMOD

In this example, option 2 is initially employed using transition probability data for the second
lag (Ah = 2.2) to model spatial variability in all principal directions.

4 I# of categories
0.4016 0.3004 0.2008 0.0972 /proportions
2 / background cat egory
.. Itrue/ ntcnod. dbg /' nane of debugging file
.. Itrueltpxy2. bgr loutput file for 3-D nodel
.. Itruel/ det2. bgr loutput file for determni nant
0. 002 0. 002 0.002 /determ nant extent for 3-D nodel
1. 1. 1. 1 dhx, dhy, dhz for 3-D nodel
.. /true/ tpxn2. eas I X-direction output file
201 0.10 /X-Direction: # lags, spacing
2 /1=r, 2=d, 3=et p, 4=et f, 5=i , 6=p, 7=f
..Itruel/tp.eas /data file
Ilag
../true/ tpynR. eas /Y-direction output file
100 0.25 /Y-Direction; # lags, spacing
2 /1=r, 2=d, 3=et p, 4=et f, 5=i , 6=p, 7=f
..ltruel/tp.eas /data file
Ilag
.. ltruel/tpznR. eas /Z-direction output file
100 0.25 /Z-Direction: # |lags, spacing
2 /1=r, 2=d, 3=et p, 4=et f, 5=1, 6=p, 7=f
..ltruel/tp.eas /data file
2 /lag
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Step 5 — Examine debugging output from MCMOD

Warnings are given that several off-diagonal entries have negative transition rates (Don’t panic!).
Clearly, this categorization dfue.dat data set yields very strong juxtapositional tendencies of
2—-1—-3—4—3— 1 — 2. The negative transition rates are caused by very high
transition probabilities fot = 2 and3 = 4 at the second lagXh = 2.2).

The debugging output contains useful interpretive information. Juxtapositional tendencies
appear fairly symmetric, because opposing off-diagonal entries of embedded traresifimm-
ciesare similar in magnitude. The symmetry is also evident in the coefficients of the transition
rates with respect to independent transition frequencies, which also indicate the strong jux-
tapositional tendencies betweén= 2 and3 = 4 by coefficients much greater than unity.
Transition rates of zero or less indicate that the categories are rarely, if ever, juxtaposed next to
each other.

At the bottom of the debugging file, the lateral extent of the 3-D model is given in increments
of nodal spacing. Make sure the lateral extent is large (or small) enough to encompass ranges of
correlation for most or all of the categories. Recall that reducing the determinant limit increases
the lateral extent of the 3-D model.

MCMOD debugging file

Paraneter file: ntnod. par

Nunber of categories: 4

Proportions: 0.4016 0.3004 0.2008 0.0972
Background category: 2

------- X- DI RECTI ON: === ----
Method - option 2: trans. prob. at specified |ag

1-D nodel output file: ../goofball/tpxn®. eas

WARNING O f-di agonal Transition Rate 12 is too large for colum

WARNING O f-di agonal Transition Rate i's negative.
VWARNI NG -diagonal Transition Rate is too large for row 2
VWARNI NG -diagonal Transition Rate i's negative.

-diagonal Transition Rate

of

of

o f i's negative.
WARNING O f-di agonal Transition Rate i

Of

Of

is too large for colum|
is negative.

-di agonal Transition Rate
is too large for row 4|

-di agonal Transition Rate

ARRWNNE
WREANWR S

Rate Matrix for X-Direction:

-0.552953 0.251718 0.330448 -0.029212
0.339745 -0.285394 -0.063882 0.009531
0. 653765 -0.086431 -0.972821 0.405488

-0.115940 0.020553 0.841820 -0.746433

enbedded transition probabilities:
1.000000 0.455224 0.597606 -0.052830
1.190444 1.000000 -0.223839 0.033395
0.672030 -0.088846 1.000000 0.416816
-0.1556326 0.027535 1.127791 1.000000

enbedded transition frequencies:
0.385736 0.175596 0.230518 -0.020378
0.177281 0.148920 -0.033334 0.004973
0.228031 -0.030147 0.339317 0.141433
-0.019575 0.003470 0.142133 0.126027

entropy= -1032. 46

w.r.t. independent transition fregs

( 1.8085) 2.2039 0. 9605 -0.3085
2.2250 ( 3.5039) -0.6139 0.3327
0.9501 -0.5552 ( 1.0279) 3.1416

-0.2963 0.2322 3.1571 ( 1.3397)

W.r.t. volumetric proportions:

( 1.8085) 0.9068 1.7809 -0.3252
2.0738 ( 3.5039) -0.7799 0. 2404
1.3374 -0.2364 ( 1.0279) 3.4272

-0.3492 0. 0828 5.0706 ( 1.3397)

w.r.t. # of enbedded occurrences

( 1.8085) 1.8 1.0818 -0.2575
2.6266 ( 3.5039) -0.5614 0. 2255
1.1510 -0.3942 ( 1.0279) 2.1851

-0.3519 0.1616 2.9048 ( 1.3397)

.Construcling 3-D transition probability nodel
# of lags in +x,+y,+z direction = 7 8 8
total # of lags = 4335

Step 6 — Compare measured and modeled transition probabilities

The comparison is accomplished by slight modifications toGRAFXX parameter file used
in step 3.
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20 0.20

nooo

./trueltp.eas
'0.40 0 1.00
/true/tpxmz eas
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6.5
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Mar kov Chain

/symmetry check (1=sym
/dx dy between plots (inches)
/line at zero? l=yes
I'nunber of input files
linput file 1
/var 1: nmarker,
linput file 2
/var 2: marker,
loutput file
I nunber of categories
/ Xmi n, Xmax, Ym n, Ymax
I# of X Y deci mal places
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Data scal e factor
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Step 7 - Generate a 3-D realization using TSIM

A 50 x 50 x 50 realization is generated assuming isotropy.

4
0.4 0.30.20.1
.. ItruelsinBd. bgr
1
1
t psi m dbg
3251
1
1.0 50 1.0
1.0 50 1.0
-24. 50 1.0
1 4
1
0.001
./true/tp3d. bgr
. /true/ det 3d. bgr
.Itruel/ datcat. eas
0. 0.
0. 0.
j unkaz. bgr
j unkdi p. bgr
-1 0.00001 O
0. 05

I nunber of categories
I proportions
loutput file
/output format:
/ debuggi ng | evel
/ debugging file
I seed

/' nunber of sinulations
/xnmin, nx+, xsiz
/ymn, ny+, ysiz
lzmn, nz+, zsiz
I'ndmin, ndmax

/i basi s: 0=cov, 1=t p
/wratio

/trans. prob. nodel
/determinant file
/input data file
lazimuths: coord,
/dip: coord, true
lazimuth int*1 file

Idip int*1 file

/maxit; tol; -1=weight, 1=l agl
/quenching determinant linit

1=bi nary, 2=ascii

file

true




Step 8 - View realization using CHUNK
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40.

.. Itrue/true3d. ps
. 127.

condi ti onal
sed on "true.dat" data set
.92 -0.4 0.7 0.48

0

41
.020

. 0. 0. 0.
rue/ si n8d. bgr

=l andscape; 1=11x17

plot translation (inches)

I egend translation (inches)
2,4,8; color(1) or gray(0)
, title, axes rgb

t binary grid file

# X,y,z chunks

X, Y, Z spacing betw. chunks

# of chunks to crop

chunk#'s to crop

output .ps file

gmin gmax

# cutoffs: cut, clr/gray

shading: XY, XZ,YZ ; +=light
Xmin, Ym n, Zmin

eci mal pl aces
ics per |abel

e factor
e

i
i

c par aneters

| egend? (0=no), vert?

# of cats; nrow, ncol

height & width

category 1

| abel

category 2

| abel

c

|

c

|

ategory 3
abel

z 77

3-D conditional simulation
based on "true.dat" data set

GSLIB'’s true.dat

63
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LLNL Data Set

The Lawrence Livermore National Laboratory (LLNL) data set consists of about 5,500 m of
semi-continuous vertical profiles (logs) of core descriptions of alluvial sediments obtained from
125 boreholes drilled for hydrogeologic characterization of the shallow aquifer system under-
lying LLNL (Qualheim, 1988). Lithofacies were categorizedlabris flow(poorly sorted clay,

silt, sand, gravel)floodplain (clay and silt) levee (silty fine sand), ana¢hannel (moderately

to well sorted sand and gravel) deposits. This categorization was based on geologic interpre-
tation of the depositional system with consideration for contrasts in hydrogeologic properties,
to serve as a geologically sound basis for defining “hydrofacies” in detailed 3-D models of the
groundwater flow system (Noyes, 1990).

Step 1 — Put data into GEOEAS format

Dat a

7

X = easting

y = northing

z = el evation above nean sea |eve

1 = debris flow

2 = floodplain

3 = levee

4 = channe
2132.8 2487. 4 137.07 0 1 0 0|
2132.8 2487. 4 136.77 0 1 0 0
2132.8 2487. 4 136.47 0 1 0 O
2132.8 2487. 4 136.17 0 1 0 O
2132.8 2487. 4 135. 87 1 0 0 0|
2132.8 2487. 4 135. 57 1 0 0 0|
2132.8 2487. 4 132. 27 0 1 0 0|
2132.8 2487. 4 131.97 0 1 0 0
2576. 2 2695. 5 186.48 0 1 0 O
2576. 2 2695.5 182.28 0 0 0 1
2576. 2 2695.5 181.98 0 0 0 1
2576. 2 2695.5 181. 68 0 0 0 1
2576. 2 2695.5 181. 38 0 0 0 1
2576. 2 2695.5 181. 08 0 1 0 0|
2576. 2 2695. 5 175,98 1 0 0 0
2576. 2 2695.5 175.68 0 1 0 O
2576. 2 2695.5 175. 38 0 1 0 0|
2576. 2 2695.5 112.98 0 1 0 0|

Step 2 — Calculate vertical transition probabilities using GAMEAS

START OF PARAMETERS

dat a. eas /input file
/x,y,z colums

4 4567 Invar, varl,2,3,... colums|
-1, 2. /vmin, vmax

dat at pz. eas /output file
41 /# | ags

0. 3000 /'l ag spacing

0. 1500 /lag tol erance

1 /ndir

0.0 90. 0.25 -90.0 22.50 0.25 /az, daz, azbw dip,..,..

6 /# of bivariate statistics

11 /j,k, 11=tp

ARRAPWWWWNNNNRRRRE
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Step 3 — Plot vertical transition probabilities using GRAFXX
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0 /symretry check (1l=sym
0.20 0.20 /dx dy between plots (inches)
0 /line at zero? l=yes
1 /' nunber of input files
..l .01 nl/tp/l1nl 1195t pz. eas /input file 1
-10 0.55 0 1. /file 1: marker, |w, dash, grayj
../../manual /1 nl/Ilnltpz.ps /output file
4 / nunber of categories
0. 6. 0.0 1.0 / Xm n, Xmax, Yni n, Ymax
01 [# of x,y decinal places
5.4 0.9 /X, Y scal es (units/inch)
1.0 / Data scal e factor
0. 0. 0 / axes col or
3. 0.5 /X, Y | abel increnents
3 5 /X, Y tics per |abel
Lag (M IX title

/Y title
0 /1= titles for each plot
debris fl /X title variable 1
debris fl /Y title variable 1
f1 oodpl ai n /X title variable 2
fl oodpl ai n /Y title variable 2
| evee /X title variable 3
I evee /Y title variable 3
channel /X title variable 4
channel /Y title variable 4

/title, line 1
Transition Probability - Vertical /title, line 2
1 /1=pl ot | egend
7.5 /width of legend (inches)
Measur ed /label for file 1 data

Transition Probability - Vertical
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Step 4 — Calculate lateral transition probabilities using GAMEAS

Although the alluvial fan facies architecture is expected to be highly anisotropic, the lateral
transition probabilities were calculated as if lateral isotropy were assumed. The anisotropy
directions in the LLNL alluvial system substantially vary because of radial fan morphology,
variation in fan source location, fan commingling, fluvial meandering, and deformation. The
isotropic calculation was made under the assumption that the resulting transition probabilities
would primarily reflect an upper limit to the strike-direction spatial continuity. It would also
prescribe a lower limit to the dip-direction spatial continuity.



66 Chapter 10 Examples

START OF PARAMETERS
nl/data/llnl 1195. eas

linput file
Ix,y,z colums
Invar, varl,2,3,..
/vmin, vmax
/outpul file

I# 1 ags

l ag spacing

lag tol erance

ndir

az, daz, azbw; dip, ddi p, di pb
#

IN

col ums

of bivariate statistics

/
/
/
/
/
lj,k, 1l1l=tp

Step 5 — Plot lateral transition probabilities using GRAFXX

20 0.20
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. /IInI/tp/IInItpx eas
210 '0.5 0 0.

~/ geost at s/ manual /I I nl /1| nltpx.ps

0. 50. 0.0 1.0

5
Lag
Transition Probability
debris fl

debris fl

fl oodpl ai n

f 1 oodpl ai n

| evee

| evee

channe

channe

Transition Probability - Strike
1

8.5
Dat a

/symretry check (1=sym)
/dx dy between plots (inches)
/line at zero? l=yes
/nunber of input files
/input file 1

/marker, |w, dash, gray
loutput file

/' nunber of categories

/ Xm n, Xmax, Yni n, Ymax

/# of X, Y decimal places
X,Y scales (units/inch
Data scal e factor

a

abel increnents
cs per |abel

e
e

les for each plot
e variable
e variable
e variable
e variable
e variable
e variable
e variable
e variable
, line 1
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Step 6 — Develop 1- and 3-D Markov Chain models using MCMOD

The following procedure, used to develop the LLNL principal direction models, may guide
application ofMCMOD to typical data sets derived from boreholes:

1. Initially develop the vertical-direction model, using either option 1, 2, or 3. For the strike and
dip directions, arrive at plausible mean lengths consistent with the transition probability data
(if available) to define the diagonal entries. For the off-diagonal entries, assume symmetry
and use option 3 to estimate embedded transition probabilities. By assuming symmetry
and a background category, only three of the twelve off-diagonal transition rates need to be
prescribed for a four-category system (only one of six for a three-category system).

2. Look at the debugging output file frofCMOD , which includes other interpretations yield-
ing an equivalent Markov chain model. Option 3, the embedded transition probability frame-
work, is usually the most interpretable. If necessary, refine the vertical-direction model.

3. For the strike and dip-direction models, initiate the off-diagonal embedded transition proba-
bilities by considering Walther's Law concepts, that vertical facies successions reflect lateral
facies successions. For the off-diagonal terms needed to complete the strike and dip direc-
tion models, assign the embedded transition probabilities obtained from the vertical model.
Refine the strike and dip direction models as necessary to maintain geologic plausibility,
adherence to probability law, and consistency with transition probability data.

4 I# of categories

0.066 0.565 0.190 0.179 I proportions

2 I background cat egor

..I11nl/tp/ mecnod. dbg I'nane of debugging file

..I1Inl/tp/tpxyz.bgr loutput file for 3-D nodel

..111nl/tp/det.bgr loutput file for deterninant

0.05 0.05 0.05 /deternminant linits for 3-D nodel

3.0 10.0 I dhx, dhy, dhz for 3-D nodel

.v/IInI/lp/\Ianxmeas I X-direction output file

200 1. I/ X-Direction: # |ags, spacing

3 loption: 1=r,2=d, 3=etp, 4=etf, 5=i

8.0 0. 1 -1

0. 0. 0 0.

0. 027 0. 6.0 -1

0. 041 0. 0.839 10.

..IlInl/tp/llnltpym eas /Y-direction output file

200 2.5 /Y-Direction; # |ags, spacing

3 /1:r2:d3elp4elf5|6p7f

24, 0. -1 -1,

0. 0. 0 0.

0.027 0. 20.0 -1,

0.041 0. 0.839 50.

../IInI/(p/\In\tpznﬁ.eas /Z-direction output file

200 0. /Z-Direction: # |ags, spacing
loption: 1=r,2=d, 3=etp, 4=etf, 5=i

../ Inl/tp/llnl 1195t pz. eas /data file

3 /lag #

MOVOD debuggi ng f11e

Parameter file: momodi|ni3. par
Nunber of categori es:
Proportions: 0.0660 o 5650 0.1900 0.1790
Background cat egory:

""" hod - “opton &t rans. prob. at speci ied I
1D el output file: /Hnl/lp/l\n\tpznﬂ eas”
WARMING OFf - di agonal Transi tion Rate i's negative.

Rate Matrix for Z-Direction:

-0.871510 0.702561 0.103207 0.065742
0.079481 -0.435999 0.150644 0.205875
0.029521 1.073549 -1.227927 0.124857
0.039128 -0.022367 0.789836 -0.806597

enbedded transition probabilities:
1.000000 0.806142 0.118423 0.075434
0.182296 1.000000 0.345514 0.472190
0.024042 0.874278 1.000000 0.101681
0.048510 -0.027731 0.979221 1.000000

enbedded transition frequencies
0-084396 0. 068035 0.009994 0. 006366
0.065889 0.361442 0.124883 0.170669
0.008230 0.299282 0.342319 0.034807
0,010276 -0,005875 0.207441 0. 211843

entropy=

wr.t. independent fransition fregs:

€Ly 0.3121 0.4138
1.7813 ( 2.2936) 0. 5699 1.6207
0.2570 1.3657 ( 0.8144) 0.3819
0. 6679 -0.0558 2.2758 ( 1.2398)

con st ucting 3:D transition probabil ity mdel
of 1ags in +x, 4y, 2 direction =
Tovhl %1 Tags =




68 Chapter 10 Examples

Step 7 — Calculate independent or maximum entropy (disorder) model

4
0.066 0.565 0.190 0.179
2

I nl/tp/ ncnodt pze. dbg
I'nl/tp/tpxyze. bgr

I nl/tp/dete. bgr

0  1.000 1.000
1 0. 30
|

p/IInItpxma eas

BrRON
(2]

roNo
(2]
(2]
(9
o
o

[=X=0 NN
Lo =
N
©
w
o

/# of categories

/ proportions

/ background category

I'name of debugging file

/output file for 3-D nodel
/output file for determ nant
/determinant limt for 3-D nodel
/ dhx, dhy, dhz for 3-D nodel

/ X-direction output file
IX-Direction: # |lags, spacing
/option: 1=r, 2=d, 3=etp, 4=etf, 5=i

/Y-direction output file
/Y-Direction; # lags, spacing
/option: 1=r,2=d, 3=etp, 4=etf, 5=i

/Z-direction output file
/Z-Direction: # lags, spacing
/option: 1=r, 2=d, 3=etp, 4=etf, 5=i

Step 8 — Compare measured and modeled transition probabilities

Transition Probability - Strike
1

7.5
Dat a
Model
Prop.
Lengt h
Di sor der

0

0.20 0.20

0

5

... Inl/tp/llnltpx. eas
-10 0.5 0 O.

..l /1Inl/tp/llnltpxm eas
01.00 0.
../..11Inl/tp/proptpx. eas
00.51 0.

/. /1 Inl/tp/ M tpx. eas
00.53 0.

... /1 Inl/tp/llnltpxne. eas
01.0 0 O

~/ geostats/ manual /11 nl /I nltpxm ps
4

0. 50. 0.0 1.0

01

45. 0.9

1.0

0. 0. 0

25. 0.5

5 5

Lag (m .
TranS|1|0n Probability
debrlsfl

debris fl

f1 oodpl ai n

f1 oodpl ai n

| evee

I evee

channel

channel

/symetry check (1=sym
/dx dy between plots (inches)
Iline at zero? l=yes
I'nunber of input files
linput file 1

/' marker, |w, dash, gray
/linput file 5

/' marker, |w, dash, gray
linput file 2

I marker, |w, dash, gray
linput file 3

I marker, |w, dash, gray
linput file 4

/' marker, |w, dash, gray
loutput file

/' nunber of categories

/ Xmi n, Xmax, Ymi n, Ymax

I# of X Y deci mal pl aces
/X, Y scal es (units/inch)
ta scal e factor

abel increnents
cs per |abel

es for each plot
variabl e
variabl e
vari abl e
variabl e
vari abl e
vari abl e
variabl e
variabl e
, line 1

POOODDDD DD

BRWWNNR R

/
/
/
/
/
/
/
/
/
/
/
/
/
/
/
/
/
/
/

§H-<x<x<x<xw<xxxgg
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Transition Probability - Strike

debrisfl  floodplain levee channel
= ] ] ° ] ]
(%] ] ] ] ]
= o P — -
o) 1/ Sq . 1 . e
© ] . Tee = CU 5
3 iy [ 1 .
E.‘ T T T T
c = 7] BN ]
83 1 B . ]
T3] = \"‘”"—— =
8o EER E :
o O J ] \ 1% = e
= =~ ] e o ] . o™ o
= d s e e e A
< ] ] K ]
8 S 7 ] . ] .
= o
= e S =
8 2 9 ://ﬂ.__ . Jats
< 3 o 7 R s v i ot
~ f'\\\"\Y!‘\ \\\\‘\\\\ \\\\‘\\\.\ \\\\\\\T
Mo : 1 .
Ko} ] ] ] N .
c J ] . J 7 .
g 057 j/%._‘i - Yl
< ] R ., | ]
© e 17" . ¥ ]
0.0 FFr e o AR
0 25 50
Lag (m)
Data Model Prop. Length Disorder
Step 9 — Generate a 3-D realization using TSIM
4 /' nunber of categories
0.07 0.56 0.19 0.18 I proportions
../ exanpl es/|Inlsimbgr /output file
1 / debuggi ng | evel
t psi m dbg I debugging file
2311 / seed
1 /nunber of sinulations
1955. 292 -200 3.0 / xcenter, nx, Xxsiz
2692. 908 -100 10.0 /lycenter, ny, ysiz
127.50 -241 0.3 /zcenter, nz, zsiz
1 4 /ndmi n, ndmax
1 /i basi s: 0=cov, 1=tp
0.001 /wratio
../tp/llnltpxyz. bgr /trans. prob. nodel file
/tp/llnldetxyz. bgr /spectral radius file
../data/llnl 1195. eas linput data file
0. 0. /azimuths: coord, true
0. 0. /dip: coord, true
../ exampl es/| | nl az. bgr lazinuth int*1 file
..l exanpl es/ || nldip.bgr Idip int*1 file
4 0.00001 O /maXit; tol; -1=no dcl, 1=l ag]]
0.5 / quenching determinant linit
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Step 10 — View realization using CHUNK

vz )

.5
5 10.0

ORWNT PRWWR
N

/1 andscape(1) or portrait(0)
/x y plot translation
/x y legend translation

/nbit 2,4,8; color(1l)or gray(0)

L1001 0. 0. O. 0. 0. /rgb: bkgr, title, axes
./ exanpl es/ | | nl si m bgr /input binary grid file
1# X,y,z chunks
30. 0. 110. /XY, Z spaci ng betw. chunks
/# of chunks to crop
/chunk #'s to crop
../ exanpl es/ |1 nlsimps /output .ps file
10 /# of categories
-128. 5 /val ue, gray
-4.0 1
-3.0 13
-2.0 16
-1.0 8
1.0 8
2.0 16
3.0 13
4.0 1
127. 14
0o -2 -1 /'shadi ng: XY, XZ, YZ( +l i ght -dark)
-601.5 -1005. 55.05 /Xm n, Ym n, Zm n
3. 10. 0.3 /dX, dY, dz
33 33 40 40 5 83 / croppi ng I, xu,yl,yu, zl, zu
160. 160. 32. IX,Y,Z scales (units/inch)
250. 250. 20. /X, Y,Z | abel increnents
000 /XY, Z deci mal pl aces
5 54 IX,Y,Z tics per |abel
Nor t heast (m) /IXtitle
Nor t hwest (m) /Y title
El evation (m 1Z title
1.00 /Data scal e factor
/ title, line 2
/ title, line 2
. 707 -.707 0.95 0.312 /concat paranters
2 00 /1 egend, |egend orientation?
4 41 /# of categories; #rows,cols
1.6 1.0 /1 egend height, width
6 lcategory #
debris flow /1 abel
/category #
fl oodpl ai n /| abel
8 /category #
| evee /1 abel
lcategory #
channel /1 I
(5>
«@ Bl
< P
“@«N€§ Q\ ;5{/42
[ debrisflow
[ floodplain
[ levee

Il channel
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LAAPMOA4C Data Set

The LAAPMOA4C data set consists of continuous vertical profiles (logs) of core descriptions of
fluvial sediments categorized as SM (silty sand), ML (silt), CL/ML (clayey silt or silty clay),
CL/CH (clay or ‘fat clay”).

The goal of this example is to generate a 3-D realization that is consistent with the data and
spatial variability. This example represents a typical hydrogeologic application, where a de-
tailed and realistic hydrogeologic model is needed, but the data, although intensively sampled,
are not adequate to exactly determine the true hydrogeologic structure.

Step 1 — Put data into GEOEAS format

Dat a

7

X = easting

y = northing

z = el evation above nean sea | eve
1

2

3

4

3836. 1 1425. 4 215.12
3836. 1 1425. 4 213.12
3836. 1 1425. 4 211.12
3836. 1 1425. 4 209.12
3836. 1 1425. 4 207.12
3836.1 1425. 4 205. 12
3836. 1 1425. 4 203.12
3836. 1 1425. 4 201.12
3836. 1 1425. 4 199.12
3836. 1 1425. 4 197.12
3836. 1 1425. 4 195.12
3836. 1 1425. 4 193.12
3836. 1 1425. 4 191.12
3836.1 1425. 4 189.12
3836. 1 1425. 4 187.12
3836. 1 1425. 4 185.12
5242.6 1494. 6 218.71
5242.6 1494. 6 216.71
5242.6 1494. 6 214.71
5242.6 1494. 6 212.71
5242.6 1494. 6 210.71
5242.6 1494. 6 208.71
5242.6 1494. 6 206.71

0000000 ORRRRRRERRERPROOOO00O
0000000000000 000000
0000000000000 00000000
B s s 00000000k

Step 2 — Calculate vertical transition probabilities using GAMEAS

START OF PARAMETERS

../ exanpl es/ | aapno4c. eas /input file

123 /x,y,z colums

4 4567 Invar, varl,2,3,... colums|
-1, 2. /vmin, vmax

..l exanpl es/ | aapno4ct pz. eas /output file

0 /# | ags

/'l ag spacing
/lag tol erance
I'ndi'r

90.0 10. 90.0 22.50 1.0 / az, daz, azbw; di p, ddi p, di pb
6 /# of bivariate statistics
11 /j,k, 11=tp

BADDWWWWNNNNRRERRPERORRPNW
AWONRPARONFRAONRPAWONER

-

[
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Step 3 — Plot vertical transition probabilities using GRAFXX

0 /symretry check (1l=sym
0.20 0.20 /dx dy between plots (inches)
0 /line at zero? l=yes
1 /' nunber of input files
../l exanpl es/ | aapno4ct pz. eas /input file 1
-10 0.40 0 1.00 /file 1: marker, |w, dash, grayj
..l exanpl es/ tpz. ps /output file
4 / nunber of categories
0. 40. 0.0 1.0 / Xm n, Xmax, Yni n, Ymax
01 [# of x,y decinal places
30. 0.75 IXYscaI es (units/inch)
1.0 / Data scal e factor
0.0 /axes gray |evel
10. 0.5 /X, Y | abel increnents
5 5 /X, Y tics per |abel
Lag (ft) IX title

/Y title
0 /1= titles for each plot
SM /X title variable 1
SM /Y title variable 1
M /X title variable 2
M /Y title variable 2
CL/ M /X title variable 3
CL/ M /Y title variable 3
CL/CH /X title variable 4
CL/CH /Y title variable 4

/title, line 1
Transition Probability /title, line 2
1 /1=pl ot | egend
6.5 /width of legend (inches)
Measur ed

Transition Probability

SM ML CL/ML CL/CH
‘\H‘H\‘ » ‘H\‘H\‘
o 1
= e, E E E
] e e RS e
o 1
= ]
5 E E E E
O T 0000000005007
Lo T
5 ] ] 1
5 054 .. B E T e aeeonne
a EC e nE 1 eneueosnons
0.0 ;JTH‘l‘c‘)mz‘(‘)Hé‘c‘)Hz‘to H e
Lag (ft)
M easured

Step 4 — Calculate lateral transition probabilities using GAMEAS

In this application, the lateral spatial variability is assumed isotropic, that is, the dip- and strike-
direction patterns of heterogeneity are assumed to be similar. Alternatively, soft information
could have been used to create an anisotropic model.



START OF PARAMETERS
..l exanpl es/ | aapno4c. eas

123

44567

-1 2.

.. | exanpl es/ | aapno4ct pxy. eas
25

100.
50.

1
0.2 90.1 10000000. 0.0 22.50 1.0
16

ARRRWWWWNNNNR R
AONRPAWNRPRAONRRWNE
=
[

linput file

/x,y,z colums
Invar, varl,2,3,...
/vmin, vmax
loutput file

/# | ags

| ag spaci ng

lag tol erance

ndir

az, daz, azbw; di p, ddi p, di pb
#

]

col ums|

of bivariate statistics

!
!
!
!
!
1j,k, 11=tp

Step 5 — Plot lateral transition probabilities using GRAFXX

LAAPMOA4C Data Set

.20 0.20

rooo

../l exanpl es/ | aapno4ct pxy. eas
-10 0.40 0 1.00
..l exanpl es/ t pxy. ps

4
0. 2000. 0.0 1.0

01
1500. 0.75

Transition Probability
1

6.5
Measur ed

/symetry check (1=sym)

/dx dy between plots (inches)
/line at zero? l=yes

I'nunber of input files

linput file 1
/file 1. marker,
loutput file

I nunber of categories

/ Xmi n, Xmax, Yni n, Ymax

/# of x,y decimal places
Y scal es (units/inch)
a scale factor

s gray |evel

abel increments
ics per |abel

>~

es for each plot
vari abl e
vari abl e
vari abl e
vari abl e
vari abl e
vari abl e
vari abl e
vari abl e

PODDDDDD DD

ARWWNNR R

ER DTSR <X <X <X XX Y PX

I'w, dash, gray]|

Transition Probability

SM ML CL/ML CL/CH
i ’TI’TTTT?WHT‘TTH
. ] ] 1 1
s = R e ]
w SESSSSRSSSSSRAASE [ AMSHSSSUSSSSSSSOS! K M3k s ESSSSLMSSSSCLSIAS
_ ] ] 1 1
2 - - 4 4
a T e b 3 g ..
O Joree el Jon s et 0 170 e s ostene
P e s o
N ] ] ]
5 057 1 ] a1 .
0.0 —rermprerr | e e e
0 1000 2000 Lag ()
Measured

73
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Step 6 — Develop 1- and 3-D Markov Chain models using MCMOD

4 /# of categories

0.420 0.221 0.093 0. 266 / proportions

4 / background category

.. I exanpl es/ ncnodt p. dbg /nane of debugging file

..l exanpl es/ t p3d. bgr /output file for 3-D nodel

..l exanpl es/ det 3d. bgr /output file for determ nant
0.020 0.020 0.020 /spectral extent for 3-D nodel
50. 50. 2. / dhx, dhy, dhz for 3-D nodel

../ exanpl es/ t pxm eas /X-direction output file

201 10. /X-Direction: # |lags, spacing
3 /option: 1=r,2=d, 3=etp, 4=etf, 5=i
550. -1. -1.

0.30 150. -1

0.15 0.5 90.
0. . 0.

../ exanpl es/ t pym eas
201 10.

cece

/Y-direction output file
/Y-Direction; # lags, spacing

3 /option: 1=r,2=d, 3=etp, 4=etf, 5=i

550. -1. -1. 0.

0.30 150. -1, 0.

0.15 0.5 90. 0

0

. . 0. 0.
..l exanpl es/tpznR. eas /Z-direction output file
201 0.25 /Z-Direction: # lags, spacing
3 /option: 1=r, 2=d, 3=etp, 4=etf, 5=i
9. 50 0.67 0.22 0.
0.53 5.30 0.08 O.
0.46 0.22 7.00 O.
0. 0. 0 0.

Step 7 — Compare measured and modeled transition probabilities

In practice, steps 6 and 7 were implemented repeatedly until a satisfactory fit is obtained. The
following procedure can be useful for developing the principal direction models:

1. First apply option 2 iMCMOD , which fits a Markov chain directly to transition probabil-
ities at a specific lag.

2. Plot the measured and modeled transition probabilities [GRYFXX .

3. Look at the debugging file output frodCMOD , which includes other interpretations yield-
ing an equivalent Markov chain model. The embedded transition probability framework
(option 3inMCMOD ) is usually the most interpretable.

4. Apply option 3 inMCMOD . Starting from equivalent parameters obtained in first model,
adjust the embedded transition probabilities to raise or the lower transition rates. Recall
that background column entries are dictated by the other entries in the same row, and that
background row entries are dictated by the other entries in the same column.
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0
0.20 0.20
0
1

..l exanpl es/ | aapno4ct pz. eas
-10 0.40 0 1.00
..l exanpl es/ tpz. ps

40. 0.0 1.0

/symetry check (1=sym)

/dx dy between plots (inches)
/line at zero? l=yes

I'nunber of input files

linput file 1
/file 1. marker,
loutput file

/' nunber of categories

I Xmi n, Xmax, Yni n, Ymax

/# of x,y deciml places
Y scal es (units/inch)
ta scale factor

es gray |evel

abel increments
cs per |abel

es for each plot
vari abl e
vari abl e
vari abl e
vari abl e
vari abl e
vari abl e
vari abl e
variabl e

, line 1

PODODODDDD DD

ARWWNNR R

ERTTSXSIX XX XXX Y PX

I'w, dash, gray|

Transition Probability

SM ML CL/ML CL/CH
7HH‘HH‘HH‘HH 7HH‘HH‘HH‘HH 7HH‘HH‘HH‘HH 7HH‘HH‘HH‘HH
O ] ] 1 1
= E s2onr—— | E 4 . v
D (FSSIHIIIE [ HMNINSA, f * Sctstctucimmn i O ——.
_ ] ] 1 1
3 I AN by - -
o ] ] o] ] 1 s
P o
z ] ] ]
5 054 e 1T - E
O ] 000004 22 ] ] “
0.0 70““1‘6”‘2‘(‘1‘”3‘6”4‘107Wwwwm T
Lag (ft)
Measured Markov Chain

Step 8 — Generate a 3-D realization using TSIM

4

0.420 0.221 0.093 0. 266
.. I exanpl es/ si n8d. bgr

1
1
t psi m dbg
3251

1
0.001
..l exanpl es/ t p3d. bgr
..l exanpl es/ det 3d. bgr
..l exanpl es/ | aapnp4c. eas
0. 0.
0. 0.
j unkaz. bgr
j unkdi p. bgr

3 0.00001 O

I nunber of categories
I proportions
/output file
/output format:
/ debuggi ng | evel

1=bi nary,

/ debugging file

/ seed

I nunber of sinulations
/xmin, nx, xsiz

/ymn, ny, ysiz

Izmn, zsiz

nz,
/'ndni n, ndnmax
/i basi s: 0=cov, 1=t p
/wratio

/trans. prob. nodel
/determinant file
/input data file

lazimuths: coord,

/dip: coord, true
lazimuth int*1 file

Idip int*1 file

/maxit; tol; -1=weight, 1=l agl
/quenching determinant linit

file

true

2=asci i

75
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Step 9 — View realization using CHUNK

0 /landscape(1) or portrait(0)
0.35 0.40 /x,y plot translation (inches)
2.00.7 /x,y legend translation (inches)
4 1 Inbit 2,4,8; color(1) or gray(0)
1. 1. 1. 0. 0. 0. 0. 0. 0. /rgb: bkgr, title, axes
..l exanpl es/ | aapno4c. bgr 4 linput binary grid file
222 1# Xx,y,z chunks
0. 1000. 0. I'X,Y,Z spacing betw. chunks
1 /# of chunks to crop
8 /chunk#' s to crop
..l exanpl es/ | aapno4c4. ps loutput .ps file
8 1# of categories
-4 1 111
-3 111 11
-2 111 1
-1 11 11 1

1 16 16 1

2 116 1

3 116 16

4 1 116
3 -3 0 /'shadi ng: XY, XZ, YZ (+light -dark|
3000. 1400. 140. I/ Xmin, Ymin, Znin
50. 50. 2. 1dX, dy,
04150 9 /cropping: xI,xu,yl,yu,zl,zu
1500. 1500. 150. IX,Y,Z scales (units/inch)
2000. 2000. 50. IX,Y,Z label increnments

IX,Y,Z deci mal pl aces

10 10 10 IX,Y,Z tics per |abel
Easting (ft) IXtitle

Northing (ft) 1Y title

El evation (ft) 1Z title

. /Data scale factor

Real i zation #4 I title, line 1

LAAPMAC Data Set I title, line 2
0.92 -0.40.92 0.4 /concat paraneters

1 /1 egend? (1=yes)
422 I# of cats; nrow, ncol
0.8 2.5 /height & width
5 /category #
SM 11 abel
6 /category #

M 11 abel
7 /category #
CL/ M 11 abel
8 /category #
CL/ CH /1 abel

Realization #4
LAAPMOA4C Data Set

£Lrevarorn (77)

[]cL/ML
[ cL/CcH
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