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Preface
The purpose of T-PROGS is to enable implementation of a transition probability/Markov ap-
proach to geostatistical simulation of categorical variables. In comparison to traditional vario-
gram-based geostatistical methods, the transition probability/Markov approach improves con-
sideration of spatial cross-correlations and facilitates the integration of geologic interpretation
of facies architecture into the model development process. The manual was designed primar-
ily for geostatistical practitioners, not theoreticians. In our experience, geostatistics is not the
primary occupation of most users of geostatistical simulation codes. As such, the manual re-
lies on references for much of the theoretical details. The T-PROGS computer source codes
are provided without any warranty or guarantee of freedom from bugs. On the other hand, the
accessibility of the source code frees the user to make any modifications as needed. An effort
has been made to achieve a high degree of platform independence, however the responsibility
rests upon the user to make any specific or system-dependent changes in the FORTRAN code
or PostScript graphical output. The user should take responsibility for properly compiling the
codes, checking dimensioning of arrays, constructing parameter files, understanding the theory
behind the algorithms, and modifying input or output formats for interfacing with other pro-
grams. Questions not addressed in this manual as well as comments on the manual or code may
be e-mailed toFDUOHì9OOQOéJRY.
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1 Summary

Transition Probability Geostatistical Software (T-PROGS) is a set of FORTRAN computer pro-
grams that implements a transition probability/Markov approach to geostatistical analysis and
simulation of spatial distributions of categorical variables (e.g., geologic units, facies). Im-
plementation of T-PROGS involves three main steps: (a) calculation of transition probability
measurements, (b) modeling spatial variability with Markov chains, and (c) conditional simu-
lation. These steps are accomplished by the following programs:

î GAMEAS computes bivariate statistics (e.g., transition probability, indicator cross-variogram,
etc.).

î MCMOD develops one- and three-dimensional Markov chain models of spatial variability.

î TSIM generates three-dimensional, cross-correlated conditional simulations.

The transition probability/Markov approach was developed to facilitate incorporation of ge-
ologic interpretation and improve consideration for spatial cross-correlations (juxtapositional
tendencies) in the development of geostatistical models. Further details on theory, examples,
and comparison to other geostatistical methods are given in Carle (1996), Carle and Fogg
(1996), Carle (1997a), Carle (1997b), Carle and Fogg (1997), and Carle and others (1998).

The graphical display of results may be produced with FORTRAN computer programs that
generate ‘‘PostScript’’ (PS) graphics files (Adobe Systems Incorporated, 1990):

î GRAFXX plots a matrix of one-dimensional (along a single direction) bivariate statistics.

î CHUNK displays a three-dimensional perspective of the conditional simulation.

The T-PROGS implementation process, from data to producing simulation results and graphical
output, is shown in Figure 1. The PS files may be converted to ‘‘Encapsulated PostScript’’
(EPS) using a program calledps2eps.f(or), which facilitates inclusion into text-processing and
graphics presentation programs. The PS and EPS files can also be printed directly to a printer
having a PostScript driver or viewed on screen with a PostScript viewer such as ‘‘Ghostview.’’

The general style of the program execution is analogous to the Geostatistical Software Li-
brary (GSLIB) by Deutsch and Journel (1992), whereby parameter files are prepared to admin-
ister input data for the executable codes. Indeed,GAMEAS andTSIM originated from GSLIB
codes, andGRAFXX andCHUNK contain aspects of GSLIB code as well. Two main data for-
mats are used, one for point data and the other for gridded data. Point data, in particular coded
lithologies located in an%c +c 5 coordinate system or bivariate statistics computed as a func-
tion of lag (variograms, transition probabilities, etc.), are stored in a free-format ‘‘GEOEAS’’
ASCII format. Grid data, in particular 3-D Markov chain models and conditional simulations,
are stored in a compact binary format. The simulations can also be output in an ASCII format to
promote portability. The PS and EPS graphics files are also produced in ASCII format, which
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Figure 1. Schematic diagram showing implementation of T-PROGS.

provides opportunity for direct manipulation of graphical output given some understanding of
PostScript.

The general style of this manual is designed to facilitate application to real problems. More
often than not, the user will have a data set in mind, with a goal of developing a model of a
heterogeneous geologic system. Therefore, the T-PROGS manual is organized to accommodate
the chronological progression of a typical application.



2 Background

T-PROGS offers a transition probability-based geostatistical approach to stochasticconditional
simulationof spatial distributions of categorical variables. T-PROGS can be used to analyze
spatial variability and generaterealizationsof geologic units orfacies. Importantly, the realiza-
tions attempt to honor existing data and display consistency with the spatial variability evident
in data or other geologic observations.

The overall goal of T-PROGS is to simplify conceptual aspects of geostatistical modeling,
yet maximize theoretical potential. Considering that potential users of T-PROGS will have
varying backgrounds, here is some general advice:

î To those who are not familiar with geostatistics: Fear not! You do not need to know anything
about variograms. T-PROGS emphasizes the extension of general and intuitive concepts
from probability theory to spatial problems.

î To experienced geostatisticians: Be flexible! T-PROGS conceptualizes geostatistical mod-
els in a more interpretive framework than variogram-based geostatistical approaches. For
example, the transition probability models are related to concepts ofproportionsandmean
length as compared to the parameters of ‘‘sill’’ and ‘‘range’’ used in variogram modeling.

To this end, T-PROGS is designed to appeal to geologists and geostatisticians alike.

The ‘‘Traditional’’ Approach

Consider that ‘‘traditional’’ geostatistics evolved from mining industry applications, where in-
tensively sampled data sets abound. In this respect, the implementation of traditional geosta-
tistical methods has adopted the following rather empirical approach:

1. Calculate values of a spatial statistic (usually the variogram) at regularly-spaced lags (sepa-
ration vectors).

2. Fit a mathematical function (e.g., spherical, exponential) through the variogram measure-
ments.

3. Implement various estimation (kriging) or simulation (sequential simulation, simulated an-
nealing) procedures.

Geologic or ‘‘subjective’’ knowledge does not necessarily enter directly into this procedure.

In the application of geostatistics to other geologic disciplines involving more sparsely sam-
pled variables, such as permeability, the procedures are not as straightforward. In many geo-
logic applications, the parameter at the scale of interest is more conveniently interpreted in a
categorical framework, for example:
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î petroleum – lithologies indicating reservoir, source, trap, or non-oil bearing rocks

î hydrogeology– hydrofacies or hydrostratigraphic units indicating water-bearing zones (aquifer),
aquitard, or aquiclude materials

î mineral – classifications based on grade, degrees of mineralization, or specific mineraliza-
tion phases

‘‘Indicator’’ geostatistical approaches were developed to address categorical applications, as
well as to provide ‘‘non-parametric’’ models for continuous variables (Journel, 1983).

In the practical application of either the continuous or categorical geostatistical approaches,
geologic data sets rarely provide the necessary detail to directly implement the empirical vari-
ogram curve-fitting procedure traditionally employed.If data are too sparse (or the geology is
too complicated) to calculate meaningful variograms values, then how can one implement a geo-
statistical analysis? The usual advise is to infuse more understanding of the geology (e.g., char-
acteristics of depositional systems, facies architecture, stratigraphy), for ‘‘...it is subjective in-
terpretation .... that makes a good model; the data, by themselves, are rarely enough...’’(Deutsch
and Journel, 1992). However, the prevalent means for infusing geology into geostatistics has
been to obtain a ‘‘reference image’’ or ‘‘training image’’ (e.g. Deutsch and Journel, 1992, p.
119, 161, 189; Almeida and Journel, 1994, Goovaerts, 1996), a picture of the geology which
provides a surrogate for the exhaustive data set. With the training image at hand, the geosta-
tistician can then implement the usual empirical curve-fitting variogram modeling procedure.
However, not all applications are graced with a site-specific training image, particularly in 3-D.

Does this rule out the practical applicability of geostatistics to typically sparse geologic data
sets? Geostatistics seems to offer a promising tool for addressing uncertainty and scaling issues
that inevitably occur as a result of sparse data and geologic complexity. How then can subjective
information be directly infused into the geostatistical modeling procedure?

The Transition Probability Approach

Some key answers to the problems of practical application of categorical (indicator) geostatis-
tics can be found by linking model parameters to basic observable attributes, which, for cate-
gorical variables, are:

î volumetric proportions

î mean lengths (e.g., mean thickness in the vertical direction)

î juxtapositional tendencies (how one category tends to locate in space relative to another)

î anisotropy directions

î spatial variations of the above

In this light, T-PROGS was developed to encourage infusion of subjective interpretation by sim-
plifying the relationship between observable attributes and model parameters. Understanding
the impacts of model parameters will improve conditional simulation results whether data are
abundant or sparse. The main simplification is to incorporate the transition probability instead
of the indicator cross-variogram as the measure of spatial variability. The transition probability



6 Chapter 2 Background

|æ&Eüä is defined by

|æ&Eüä ' èh i& occurs at n ü m æ occurs at j (1)

where is a spatial location,ü is the lag (separation vector), andæ,& denote mutually exclusive
categories such as geologic units or facies. Indeed, the definition of the transition probability
is simple enough to put into words:

Given that a faciesm is present at a location{, what is the probability that another (or the same) faciesn
occurs at location{. k?

or, schematically:

j

Pr{   k   }
h

x

x+h

The transition probability originates from the definition of aconditional probability

èh iîâmøj ' èh iø andîâj
èh iøj (2)

where ‘ø’ would represent {æ occurs at%} and ‘îâ’ would represent {& occurs at%n ûj.

Comparison to the Indicator (Cross-) Variogram

Traditional indicator geostatistics employs the indicator cross-variogramòæ&Eüä bivariate sta-
tistic defined as

òæ&Eüä '
�

2
. idUæE äý UæE n üäo dU&E äý U&E n üäoj (3)

where the indicator variableUæE ä denotes

UæE ä ' i �c if categoryæ occurs at 
fc otherwise

The transition probability can also be defined with respect to indicator variables as

|æ&Eüä '
. iUæE äU&E n üäj

. iUæE äj
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With analogy to a conditional probability (2), the indicator cross-variogramòøîâ could be
defined as

òøîâ '
�

2
dèh iø andîj ý èh iø andîâj ý èh iøâ andîjn èh iøâ andîâjo (4)

where ‘ø’ would represent {æ occurs at%}, ‘ øâ’ would represent {æ occurs at%nû}, ‘ î’ would
represent {& occurs at%j, and ‘îâ’ would represent {& occurs at% n ûj. Although both the
transition probability and indicator (cross-) variogram measures carry similar statistical infor-
mation, the transition probability definitions (1) and (2) are simpler and, as will be demonstrated
in later examples, more interpretable than the respective indicator variogram definitions (3) and
(4).1

The transition probability approach further empowers the geostatistical method by consider-
ing all juxtapositional (cross-correlation) information, which has been otherwise considered te-
dious and impractical in the variogram approaches (Deutsch and Journel, 1992, p. 68-69, p. 82).
The transition probability allows for the possibility of asymmetry,|æ&Eüä 9' |æ&Eýüä, whereas
the indicator cross-variogram assumes symmetry,òæ&Eüä ' òæ&Eýüä. Asymmetry would be
evident in a stratigraphic sequence that displays juxtapositional tendencies oføîäøîä, such
as a fining-upward tendency, because the same sequence viewed in the reverse direction would
appear asäîøäîø. Considering that many geologic systems display asymmetries such as
fining or coarsening-upward tendencies, the transition probability can be a more informative
and diagnostic statistic than the indicator (cross-)variogram.

Markov Chain Analysis

Markov chains offer an interpretable and mathematically simple yet powerful stochastic model
for categorical variables. In time-series applications, the Markov chain model assumes, in
theory, thatthe future depends on the present and not the past. Analogously for 1-D spatial
applications, the Markov chain assumes that spatial occurrences depend entirely on the near-
est data. The Markov chain model is appealing for geostatistical applications because it of-
fers straightforward means for developing ‘‘coregionalization’’ models to account for all spatial
cross-correlations.

Embedded Markov Chains

Most geological applications of Markov chains have employed anembeddedanalysis, in which
a matrix of vertical (5)-direction transition probabilities ofembeddedoccurrences, i.e., from
onediscreteoccurrence of a facies to another, is considered (e.g., Carr and others, 1966; Krum-
bein and Dacey, 1969; Doveton, 1971; Miall, 1973; Ethier, 1975).

To illustrate the concept of an embedded Markov chain analysis, Figure 2 shows a vertical
succession of three categories, sayø ' çûð|e (sand),î ' }o@+ (silt), ä ' K,@S& (clay), as

� Indicator geostatistics can also be formulated in yet simpler statistical terms by thejoint probability defined as. tUæE%äU&E%n ûäå or
èh tæ occurs at%and & occurs at%n ûå (Carle and Fogg, 1996). However, the transition probability is more interpretable (as a conditional
probability) and has a long history of usage in the geosciences.
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1

2

3

∆h z

} embedded
occurrence

Figure 2. Diagram showing embedded occurrences of a three-category system with4 @ zklwh, 5 @ jud|,
6 @ eodfn. Count of embedded transitions from category6 to category4 show to right of6$ 4 contact.

might be encountered in a borehole or a cliff face. To implement an embedded Markov chain
analysis, one must:

1. Forget about lag or spatial dependency and relative thicknesses of the beds.

2. Record the succession of ‘‘embedded occurrences,’’ that is, simply log each occurrence
of sand, silt, or clay in the vertical succession, which would might look something like:
øîäøîøäøîäøîøîä.

3. Tally up the transition count matrix, which for the succession above would be57 ý D �
2 ý ô
ô f ý

68
The diagonal elements are blank because ‘‘self-transitions,’’ e.g. fromø to ø, are unob-
servable. That is, stacked beds of the same category are assumed not distinguishable from a
single bed. The ‘‘embedded occurrence’’ term refers to the a discrete occurrence ofø, which
may consist of either a single bed or stacked beds.

4. Divide each row by the row sum to obtain the embedded transition probabilities.57 ý féHôô fé�S.
féef ý féSf
�éf f ý

68
One of the goals of MCMOD, the 3-D Markov chain modeling program in T-PROGS, is

to link the embedded Markov chain analysis to the development ofcontinuous-lag(spatially
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dependent) Markov chain models. The reason this is important is that geologists are more
inclined to think and work in the embedded framework. In this example, there are no self-
transitions because stacked beds of the same category are assumed to be indistinguishable from
a single bed. It might be possible for geologists to distinguish individual beds associated with
discrete depositional events, and an embedded Markov chain analysis can be performed in that
context as well. However, for most data sets and practical applications, the self-transitions are
considered ‘‘unobservable.’’ In the context of modeling a flow system, whether the flow unit
consists of one massive bed or stacked beds of the same facies usually would not make much
difference.

A real example of an embedded Markov chain analysis is given by Ethier (1975), who com-
puted an embedded transition probability matrix for vertically successive occurrences of five
rock units in the Pigeon-Grotto section of the Banff Formation, Alberta, Canada as

A5 '

57 |�� ü ü ü |�g
...

...
...

|g� ü ü ü |gg

68 '

599997
ý féfH. féôb� féô2S fé�bS

féôD. ý fé�eô féf féDff
féSeô fé�eô ý féf fé2�e
�éf féf féf ý féf
féôSe féô�H féô�H féf ý

6::::8
where diagonal or ‘‘self ’’ transitions are considered unobservable.

Spatial Markov Chains

A spatial dependency can also be incorporated into a Markov chain analysis. As such, Markov
chains can be used as geostatistical models of spatial variability.

Most geological applications of spatial Markov chains have considered vertical (5)-direction
transition probabilities at a fixed sampling interval or ‘‘discrete lag,’’ say{û5 as shown in
Figure 2 (e.g. Krumbein and Dacey, 1969; Schwarzacher, 1969; Ethier, 1975). For the same
Pigeon-Grotto section above, Ethier (1975) computed a transition probability matrixAE{û5ä '
èh i& occurs at%n{û5 m æ occurs at%j for a 5-ft sampling interval as

AE{û5 ' D u| ä '

57 |��E{û5ä ü ü ü |�gE{û5ä
...

...
...

|g�E{û5ä ü ü ü |ggE{û5ä

68 '

599997
féSô fé�� féf féfe fé22
fé�S féeH féfe féf féô2
�éf féf féf féf féf
fé�e f fé�e féD. fé�e
féfD fé�� féfô féf féH�

6::::8
The diagonal entries represent the transition probabilities from one category to itself, and the
off-diagonal entries represent the transition probabilities from one category to another. As a
matter of basic probability theory the row sums in any transition probability matrix should
equal unity

g[
&'�

|æ&Eûä ' � ;æ
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Lag (grid units)
1

2
3

1

4
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0.0

0.5

1.0

2 3 4

Transition Probability

Measured Markov Chain

Figure 3. Matrix of transition probability measurements and models.

and, assuming stationarity, the column sums should obey

g[
&'�

Ræ|æ&Eûä ' R& ;&

whereRæ denotes the proportions or ‘‘marginal probabilities.’’ Furthermore, the transition prob-
ability ‘‘sill,’’ i.e. *ð4

û<"
|æ&Eûä, will converge on the column category proportion

*ð4
û<"

|æ&Eûä ' R& (5)

for a stationary random field.

In one dimension, say along the vertical5, the complete set of spatial auto- and cross-
correlations forg categories can be represented by ag ûg matrixAEû5ä of transition prob-
abilities as a function of lagû5

AEû5ä '

57 |��Eû5ä ü ü ü |�gEû5ä
...

...
...

|g�Eû5ä ü ü ü |ggEû5ä

68
Thus, for a particular direction5, AEû5ä consists of a matrix of graphs representing transition
probabilities from one category to another or to the same category as a function of lag sepa-
ration, as shown in Figure 3 for the four-category system defined by Goovaerts (1996) from
the ‘true.dat’ data set given in Deutsch and Journel (1992). The transition matrix can be made
a function of a lagvectorü ' Eû%c û+c û5ä as well, thus enabling application of the transition
probabilityAEüä as a measure of 2- or 3-D spatial variability.

In theory, the discrete-lag Markov chain model assumes that the spatial variability can be
characterized entirely by a transition probability matrix at a fixed lag interval, such as the 5-ft
transition probability matrix for the Pigeon-Grotto Section above. Mathematically, the Markov
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property is evident whenAEüä depends entirely ontransition rates, explained in more detail in
Chapter 6. In practice, geologic data do not conform exactly to mathematical or probability the-
ory, so that implementation and relevance of Markov chain models is not automatic. Nonethe-
less, the conceptual simplicity of Markov chains can facilitate and strengthen the application of
geostatistics by

î making practical the development of coregionalization models,

î illuminating the relationship between model parameters and spatial structure, thus providing
means for integrating geologic interpretation, and

î ensuring that the models of spatial variability are consistent with probability law.

Conditional Simulation

Conditional simulation is a process that creates multiple, equally probable spatial distributions
of random variables or ‘‘realizations’’ that honor hard data at specified locations (Deutsch and
Journel, 1992, p. 117). Although (co)kriging may be used in the algorithms, conditional simu-
lation should not be confused with interpolation. From a geologic perspective, 2-D conditional
simulation of categorical variables, such as geologic units, can be viewed as a quantitative ap-
proach to the classic problem of drawing a geologic cross-section that realistically represents
geologic architecture between locations of control, such as outcrops or boreholes. In practice,
construction of a geologic cross-section requires a reconciliation of the available data with an
understanding of appropriate stratigraphic relationships in order to produce a plausible repre-
sentation of the geologic system. The same requirements should also hold true for producing a
geostatistical realization; the methodology should be able to reconcile patterns of spatial vari-
ability evident in the data and generate patterns of heterogeneity that are geologically plausible.
Otherwise, the realizations obtained, although equally probable, may be highlyimprobable.
Thus, the aim of conditional simulation, as illustrated in Figure 4 for the ‘true.dat’ data set ex-
amined by Goovaerts (1996), is to generate spatial distributions that honor hard data and exhibit
a realistic pattern of spatial variability.

Either a hand-drawn cross-section or a conditional simulation may serve as a representation
of geologic heterogeneity or, possibly, a template of hydraulic properties for flow and transport
modeling. Whereas the manual approach is sometimes feasible in 2-D, the 3-D situation re-
quires automated or computer-assisted methods. Yet automated methods should project some
degree of geologic insight that a geologist would subjectively infuse into a hand-drawn cross-
section. If a conditional approach can succeed in producing geologically plausible outcomes,
two distinct advantages over a manual approach emerge: (1) applicability to 3-D problems, and
(2) capability to produce an infinity of alternatives, thus providing a tool for assessing uncer-
tainty.

In the petroleum industry, 3-D conditional simulations may serve as building blocks for
‘‘reservoir models’’ to evaluate efficiency and uncertainty in recovery schemes. Analogously in
hydrogeology, conditional simulations may prove useful for developing realistic aquifer system
models to evaluate impacts of heterogeneity on ground-water flow and contaminant transport.
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"reality"
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Figure 4. The concept of conditional simulation - to generate multiple ‘‘realizations’’ that honor data and
exhibit a realistic pattern of spatial variability.



3 Data Formats

Data must be placed in a specific format to run the T-PROGS programs. Two formats are used
exclusively, a ‘‘GEOEAS’’ format for point [%c +c 5, attribute(s)] data and a binary format for
grid (array) data.

GEOEAS

The ‘‘GEOEAS’’ format, also employed in GSLIB, handles point data with a flexible ASCII
convention. T-PROGS uses this format for storing data locations and 1-D measured and mod-
eled transition probability values as a function of lag. A*.eas filename suffix designation is
recommended to signify a GEOEAS-format file. For example, Figure 5 shows an example
GEOEAS-format data file excerpt which prescribesx, y,andz locations and probabilities (in-
dicator values) for four (g ' e) categories as described in Table 1. The data from linesES ngä
to END is read in by free format in all of the T-PROGS programs and, thus, may be stored in
various columnar formats.

Data consist of the%c +c 5 locations in the first three columns andprobability values, which
should range from zero to unity, in the last four (g) columns. Thus, each data line records
the location and probability that one of the four categories occurs at the location (Figure 5).
If a datum is ‘‘hard,’’ indicating the absolute presence of the floodplain unit (category 2), the
probability values will consist of (0,1,0,0). This format leaves open the possibility of ‘‘soft’’

 Data
 7
  x    = easting
  y    = northing
  z    = elevation above mean sea level
 1 = debris flow
 2 = floodplain
 3 = levee
 4 = channel
    2132.8    2487.4    137.07   0   1   0   0
    2132.8    2487.4    136.77   0   1   0   0
    2132.8    2487.4    136.47   0   1   0   0
    2132.8    2487.4    136.17   0   1   0   0
    2132.8    2487.4    135.87   1   0   0   0
    2132.8    2487.4    135.57   1   0   0   0
    2132.8    2487.4    132.27   0   1   0   0
    2132.8    2487.4    131.97   0   1   0   0
    2576.2    2695.5    186.48   0   1   0   0
    2576.2    2695.5    182.28   0   0   0   1
    2576.2    2695.5    181.98   0   0   0   1
    2576.2    2695.5    181.68   0   0   0   1
    2576.2    2695.5    181.38   0   0   0   1
    2576.2    2695.5    181.08   0   1   0   0
    2576.2    2695.5    175.98   1   0   0   0
    2576.2    2695.5    175.68   0   1   0   0
    2576.2    2695.5    175.38   0   1   0   0
    2576.2    2695.5    112.98   0   1   0   0
.
.
.

Figure 5. Example file showing GEOEAS format for storing data locations and probability values.
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Line Description
1 text describing the contents of the file or other relevant information
2 number of data columns (@ 6.N) for storing{> |> } locations andN data values
3 to +8 .N, text describing the contents of each data
+9 .N, to END data:x, y, andz coordinates andN values associated with each data point

Table 1. Description of GEOEAS format for point data.

 0.0668 0.5623 0.1883 0.1821
17
 Lag
 1- 1 transition probability
 1- 2 transition probability
 1- 3 transition probability
 1- 4 transition probability
 2- 1 transition probability
 2- 2 transition probability
 2- 3 transition probability
 2- 4 transition probability
 3- 1 transition probability
 3- 2 transition probability
 3- 3 transition probability
 3- 4 transition probability
 4- 1 transition probability
 4- 2 transition probability
 4- 3 transition probability
 4- 4 transition probability
     0.000  1.0000  0.0000  0.0000  0.0000  0.0000  1.0000  0.0000  ...
     0.300  0.7942  0.1571  0.0282  0.0205  0.0177  0.8968  0.0430  ...
     0.600  0.6182  0.2892  0.0529  0.0397  0.0325  0.8061  0.0787  ...
     0.900  0.4707  0.3897  0.0747  0.0648  0.0437  0.7358  0.1046  ...
     1.200  0.3592  0.4561  0.0896  0.0951  0.0517  0.6824  0.1261  ...
     1.500  0.2698  0.5042  0.1023  0.1237  0.0582  0.6402  0.1441  ...
     1.800  0.2119  0.5330  0.1102  0.1450  0.0625  0.6131  0.1561  ...
     2.100  0.1709  0.5461  0.1216  0.1614  0.0643  0.5935  0.1671  ...
     2.400  0.1437  0.5309  0.1437  0.1817  0.0648  0.5809  0.1764  ...
     2.700  0.1230  0.5195  0.1563  0.2011  0.0654  0.5741  0.1836  ...
.
.
.

Figure 6. Example file showing transition probability data in GEOEAS format.

or uncertain probability values lying between zero and one and summing to one, for example,
(0.23, 0.34, 0.07, 0.36).

The GEOEAS format is also used for the output of 1-D transition probability data files pro-
duced byGAMEAS andMCMOD . For example, the example file excerpt shown in Figure 6
contains transition probabilities in the vertical (5)-direction computed byGAMEAS . To con-
form with the GEOEAS format, the transition probability files are generated as described in
Table 2. Again, programs such asGRAFXX andMCMOD will read the transition probability
values in ‘‘free format,’’ so the user could provide data in other columnar forms. In all cases,
the GEOEAS header is expected.

Binary Grid

A binary format is used to compactly store arrays of values for the 3-D Markov chain models
generated byMCMOD and the 3-D conditional simulations generated byTSIM . Although
the binary files do not provide direct access, there is usually no need to directly examine the



ASCII Grid 15

Line(s) Description
1 proportions of theN categories
2 N5 . 4, the number of data columns, which equals75 . 4 @ 4: in the example
3 text describing the ‘‘lag’’
4 to

ý
7 .N5

ü
text labeling the category transitions, i.e., the ‘‘mn’’ in wmn+k,.ý

8 .N5
ü

to END the lag and the transition probability values, cycling onn thenm.

Table 2. Description of GEOEAS format for storing 1-D transition probability data.

Line Description
1 the number of dimensions in the array
2 the sizes of each dimension
3 the array values, stored in one continuous stream

Table 3. Description of binary grid format.

contents of these files. The binary grid files are formatted as described in Table 3 whether
values are integer or real. For example, the array values for a2 û ô û e E%û + û 5ä ' 2e
node conditional simulation file generated byTSIM would consist of a continuous stream of
24 integers (each representing the category number) cycling in order of%, +, 5. Such a file
would appear as (if the binary were converted to text):

3

2 3 4

1 1 1 3 3 4 4 2 2 2 2 3 3 3 3 1 1 1 2 2 4 4 4 4� ~} �
24 values

A 3-D Markov chain modelAEû%c û+c û5ä generated byMCMOD consists of afive-dimensional
array ofreal*4 (4 byte) values cycling on%, +, 5, æ, &. These format details do not need to
be known to run the T-PROGS codes; they are given for informational purposes. However, the
following details should be noted for future reference:

î Using the binary grid option, the output fromTSIM consists of 1-byte integer values, which
may range over [-128,127].

î A negativeconditional simulation value indicates a grid block wherein at least one con-
ditioning datum is present. For example, a negative simulation value (-&) signifies that a
datum indicating category& is located within the grid block. A positive simulation value of
(+&), on the other hand, signifies that no data were present within the grid block, and that
category& was generated by the conditional simulation process.

ASCII Grid

The conditional simulation output files can also be generated in ASCII format to facilitate
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portability. The ASCII format is identical to the binary grid, except that the simulation array
values are written out with one value per line.



4 GAMEAS

The programGAMEAS calculates bivariate (two-point) spatial statistics such as the (cross-)
variogram, (cross-) covariance, transition probability, or joint probability.GAMEAS was mod-
ified from the GSLIB programGAMV3 (Deutsch and Journel, 1992) to permit computation of
transition and joint probabilities and to produce output in the GEOEAS format. Before running
GAMEAS , the user must:

1. Prepare a data file in GEOEAS format as previously described in the data formats section.

2. Set up a parameter file.

3. Check the array dimension settings in the ‘‘include’’ file calledgameas.inc.

Parameter File

Figure 7 shows an example parameter file for calculating vertical-direction transition proba-
bilities usingGAMEAS . The input format preserves conventions found inGAMV3 (Deutsch
and Journel, 1992) as described in Table 4.

START OF PARAMETERS
data.eas                                /input file
1 2 3                                   /x,y,z columns
4 4 5 6 7                               /nvar, var1,2,3,... columns
-1. 2.                                  /vmin, vmax
datatpz.eas                             /output file
41                                      /# lags
0.3000                                  /lag spacing
0.1500                                  /lag tolerance
1                                       /ndir
0.0 90. 0.25 -90.0 22.50 0.25           /az,daz,azbw;dip,..,..
16                                      /# of bivariate statistics
1 1  11                                 /j,k, 11=tp
1 2  11
1 3  11
1 4  11
2 1  11
2 2  11
2 3  11
2 4  11
3 1  11
3 2  11
3 3  11
3 4  11
4 1  11
4 2  11
4 3  11
4 4  11

Figure 7. Example parameter file for GAMEAS.
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Line Description
1 a dummy line of text which keys the beginning of the file with ‘‘STAR’’
2 input data file name [formatchar*40 ]
3 columns numbers in data file containing{, |, and} locations of data
4 # of variables (categories), followed by column #’s in data file containing those variables
5 minimum ‘‘vmin’’ and maximum ‘‘vmax’’ values used to screen extreme-valued data
6 output file name [formatchar*40 ] for bivariate spatial statistics, e.g.,datatpz.eas
7 number of lags for which bivariate spatial statistics will be calculated
8 lag spacing
9 lag tolerance (÷distance allowance used for defining data pairs)
10 loop of ‘‘ndir’’ directions (suggest keeping ndir=1)
11 azimuthal direction, tolerance, and bandwidth; dip direction, tolerance, and bandwidth
12 number of (cross-) correlations, which will beN ûN to obtain all the entries inW +k,
13 to END tail variable, head variable, index for type of bivariate statistic

Table 4. Description of parameters for GAMEAS.

Implementation Notes

î Twelve types of bivariate statistics can be calculated, with 1 through 10 described in detail
in GSLIB by Deutsch and Journel (1992, p. 40-42):

1 = traditional variogram
2 = traditional cross-variogram
3 = non-ergodic covariance
4 = non-ergodic correlogram
5 = general relative variogram
6 = pairwise relative variogram
7 = variogram of logarithms
8 = power variogram (ç ' �

2
): rodogram

9 = power variogram (ç ' �): madogram
10 = indicator variogram

11 = transition probability.tTæE%äT&E%nûäå
.tTæE%äå ; for data defined as indicator variables,TæE%ä '

UæE%ä

12 = joint probability. iTæE%äT&E%n ûäj

î As depicted in Figure 8, the azimuth angle is a clockwise rotation of the x-y plane, and
the dip angle is a counter-clockwise rotation of the y-z plane. Figure 9 shows how the lag
spacing, lag tolerance, angle tolerance, and bandwidth parameters are defined.
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Figure 8. Azimuth and dip angles.
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Figure 9. Lag spacing, lag tolerance, angle (azimuth or dip) tolerance, and bandwidth parameters.
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Include File

The filegameas.incsets dimensions of arrays ingameas.f. If not familiar with the dimension
settings, the user should checkgameas.inc, reset dimensions (as appropriate to the application),
and recompilegameas.f.

Output

The output fromGAMEAS consists of a GEOEAS-format file such as the file of calculated ver-
tical transition probabilities shown in Figure 6. Note that a large record length will be produced
because each lag contains theg ûg entries needed to describe the full transition probability
matrix.

GAMEAS will also produce a debugging file calledgameas.dbgthat contains diagnostic
information about the computed spatial statistics, as given also byGAMV3 of GSLIB (Deutsch
and Journel, 1992, p. 53-60). This information includes lag number, mean lag distance, number
of pairs, and mean values for tail and head variables.
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GRAFXX plots amatrix of graphs, such as 1-D transition probability, cross-variogram, cross-
covariance, or cross-correlation matrix values as a function of lag. After calculating one-
dimensional transition probabilities usingGAMEAS , it is recommended to graph the matrix
of measured transition probabilities usingGRAFXX before embarking on the development of
a spatial variability model. The graphs are useful for assessing data quality, interpreting jux-
tapositional relationships and trends, and preparing the implementation of the Markov chain
modeling procedures described in Chapter 6.GRAFXX is also used later to compare mea-
sured transition probabilities with Markov chain models.

Before implementingGRAFXX , the user must

1. Generate one or more GEOEAS-format data files containing transition probability values
as a function of lag.

2. Set up a parameter file.

Parameter File

Figure 10 shows an example parameter file forGRAFXX as described in Table 5. The resulting
PostScript graphical output is shown in Figure 11. The number of lines will vary depending on
the number of input data files (line 4) and the number of categoriesg (e.g., line 10).

Implementation Notes

î If the flag on line 20 equals 1 (instead of zero), thene û e ' �S Eg2ä text lines will be
expected below line 20 instead of theH ' eû 2 Eg û 2ä lines as presented in the example
of Figure 10.

î If any text lines are not needed, insert a blank line as presented in the example on lines 29
and 30.

î UseGRAFXX to plot other square matrices of graphs, such as the indicator cross-variogram
or joint probability.



0                                       /symmetry check (1=sym)
0.20 0.20                               /dx dy between plots (inches)
0                                       /line at zero? 1=yes
2                                       /number of input files
../../llnl/tp/llnl1195tpz.eas           /input file 1
-10  0.55 0 1.                          /file 1: marker, lw, dash, gray
../../llnl/tp/llnltpzm2.eas             /input file 2
0 1.5 0 0.                              /file 2: marker, lw, dash, gray
../../manual/figs/llnl1195tpz2.ps       /output file
4                                       /number of categories
0. 6. 0.0 1.0                           /Xmin,Xmax,Ymin,Ymax
0 1                                     /# of x,y decimal places
5.4   0.9                               /X,Y scales (units/inch)
1.0                                     /Data scale factor
0. 0. 0.                                /axes color
3.  0.5                                 /X,Y label increments
3    5                                  /X,Y tics per label
Lag (m)                                 /X title
Transition Probability                  /Y title
0                                       /1= titles for each plot
debris fl                               /X title variable 1
debris fl                               /Y title variable 1
floodplain                              /X title variable 2
floodplain                              /Y title variable 2
levee                                   /X title variable 3
levee                                   /Y title variable 3
channel                                 /X title variable 4
channel                                 /Y title variable 4
                                        /title, line 1
                                        /title, line 2
1                                       /1=plot legend
7.5                                     /width of legend (inches)
Measured                                /label for file 1 data
Markov Chain                            /label for file 2 data

Figure 10. Example parameter file for GRAFXX.
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Figure 11. Postscript graphical output produced by GRAFXX using the example parameter file.



Line Description
1 a flag: 0 = display full matrix, 1 = show only lower triangle (if symmetric)
2 X,Y spacing in inches between each of the graphs (matrix entries)
3 a flag: 1 indicates put a horizontal line the ordinate (Y-axis) value of zero
4 number of input files (data sets)
5 1st input file name: e.g., a data file of vertical transition probabilities
6 line attributes, file 1: marker, width (72/inch), dash, and gray (0=black, 1=white).
7 2nd input file name: e.g., a Markov chain model
8 line attributes, file 2:
9 encapsulated PostScript output file name:tpz.eps
10 number of categories
11 X minimum, X maximum, Y minimum, Y maximum values for graphs
12 number of decimal places in X, Y labels
13 X, Y scales inunits per inch
14 data scale factor (multiplier)
15 axes gray level (0.0 = black, 1.0 = white)
16 X, Y label increments
17 X, Y tics per label
18 X axis title
19 Y axis title
20 flag: 0 = column-row (X-Y) titles; 1 = titles for each graph
21 to 28 column 1, row 1, ..., column 4, row 4 titles
29 title, line 1
30 title, line 2
31 flag: 1 = plot legend
32 width of legend in inches
33 label for file 1 data
34 label for file 2 data

Table 5. Description of parameters for GRAFXX.
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Dash Code

The dash code (used in the line attributes for lines 6 and 8 in Table 5) specifies the type of dash
used in drawing a line that connects data.

0 = no dash
1 to 10 = dash size proportionate to number

Marker Code

The marker code (used in the line attributes for lines 6 and 8 in Table 5) specifies the type of
marker used to plot a data point.

Code Result
0 line with no markers
negative markers with no line
positive markers and line
÷1 cross
÷2 diamond
÷3 û
÷4 box
÷5 3-point star
÷6 triangle
÷7 5-point star
÷8 pentagon
÷9 6-point star
÷10 circle
÷11 sphere
÷12 filled circle

If the marker code is zero (0), only a line connecting the data values is plotted. If the marker
code is negative, say (-10), the data values are plotted as circles with no connecting lines. If the
marker code is positive, say (+10), the data values are plotted as circles with connecting lines.
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MCMOD provides several means for generating 1-D and 3-D Markov chain models of spatial
variability. The Markov chain is an important theoretical model for cross-correlated categori-
cal variables. It has shown remarkable applicability to many categorical geological data sets,
particularly vertical stratigraphic successions. Three-dimensional Markov chain models are
generated inMCMOD by interpolating models for each of the principal directions, say%, +,
and5 or stratigraphic strike, dip, and vertical (upward).

Before running MCMOD, the user must:

1. Have a rudimentary understanding of the transition probability and Markov chain models.

2. Set up a parameter file.

3. Check the array dimension settings in themcmod.inc include file.

4. If using option 2 (see below), prepare a GEOEAS-formattransition probabilitydata file (as
calculated fromGAMEAS ).

The resulting 3-D Markov chain file in binary grid format is used to prescribe the model of
spatial variability for the conditional simulation programTSIM (Chapter 7).

Theory

Markov chain models applied to time series assume that the future depends on the present and
not the past. For a one-dimensional spatial application, a Markov chain model assumes that
an outcome at a specified location depends entirely on the nearest datum. A three-dimensional
Markov chain model assumes that spatial variability in any one direction can be characterized
by a one-dimensional Markov chain (Lin and Harbaugh, 1984; Politis, 1994). Although the
Markov chain is defined very simply in theoretical and mathematical terms, it has shown re-
markable applicability to characterization of spatial variability of facies (or hydrostratigraphic
units) in alluvial and fluvial depositional systems (Carle and Fogg, 1996; Carle 1996; Carle and
Fogg, 1997; Carle and others, 1998). Mathematically, it can be shown that the Markov chain
consists of linear combinations of exponential structures, although non-exponential-looking
‘‘Gaussian’’ and ‘‘hole-effect’’ structures can be generated.

Matrix Exponential Form

Mathematically, a Markov chain model applied to one-dimensional categorical data in a direc-
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tion è assumes amatrix exponentialform

AEûèä ' i T E+èûèä (6)

whereûè denotes a lag in the directionè, and+è denotes a transitionrate matrix

+è '

57 o��cè ü ü ü o�gcè
...

...
...

og�cè ü ü ü oggcè

68
with entriesoæ&cè representing the rate of change from categoryæ to category& (conditional to
the presence ofæ) per unit length in the directionè (Krumbein, 1968).

An eigenvalue analysismust be carried out in order to evaluatei T E+èûèä, because the
matrix exponential isnot computed merely by computing the exponential of the matrix entries,
that is,|æ&cèEûèä 9' i T Eoæ&cèûèä. Lettingû ' ûè and+ ' +è for notational simplification,
i T E+ûä is either approximated by an infinite series or, better yet, exactly determined by

i T E+ûä '
g[
ð'�

i T Ebðûä~ð

wherebð and~ð denote the eigenvalues and spectral component matrices, respectively, of+.
The mathematical details are given in Agterberg (1974) and Carle and Fogg (1997) and Carle
and others (1998). One eigenvalue, saybð, is inherently zero and is associated with a spectral
component matrix having the proportions along each column. Thus, for a four-category system,
the continuous lag Markov chain model written out completely consists of

i T E+ûä ' E�éfä

5997
R� R2 Rô Re
R� R2 Rô Re
R� R2 Rô Re
R� R2 Rô Re

6::8n i TEb2ûä

5997
5��c2 5�2c2 5�ôc2 5�ec2
52�c2 522c2 52ôc2 52ec2
5ô�c2 5ô2c2 5ôôc2 5ôec2
5e�c2 5e2c2 5eôc2 5eec2

6::8 (7)

ni TEbôûä

5997
5��cô 5�2cô 5�ôcô 5�ecô
52�cô 522cô 52ôcô 52ecô
5ô�cô 5ô2cô 5ôôcô 5ôecô
5e�éô 5e2cô 5eôcô 5eecô

6::8n i TEbeûä

5997
5��ce 5�2ce 5�ôce 5�ece
52�ce 522ce 52ôce 52ece
5ô�ce 5ô2ce 5ôôce 5ôece
5e�ce 5e2ce 5eôce 5eece

6::8
where the5kqcð are coefficients of the spectral component matrices~ð determined in the eigen-
system analysis. Thus, the Markov chain model for each entry|æ&Eûä in AEûä consists of a
linear combinationofg ý � exponential structures added to the column category proportion.
For example, in the four-category case given in (7)

|æ&Eûä ' R& n 5æ&c2 i TEb2ûä n 5æ&cô i TEbôûä n 5æ&ce i TEbeûä
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Comparison to Discrete-Lag Form

Markov chain models are often formulated by the ‘‘discrete-lag’’ approach by successive mul-
tiplication of a transition probability matrixAE{ûèä at discrete lag{ûè

AE�{ûèä ' WAE{ûèä
AE2{ûèä ' AE{ûèäAE{ûèä

...
AE?{ûèä ' AdE?ý �ä{ûèoAE{ûèä

(8)

whereAEfä ' W. The discrete-lag approach generates transition probabilities at only discrete
lag multiples�{ûèc 2{ûèc éééc ?{ûè. However, any discrete-lag Markov chain can be con-
verted to a continuous-lag Markov chain by computing

+è '
*? dAE{ûèäo

{ûè
(9)

which involves an eigensystem analysis (Agterberg, 1974; Carle, 1996; Carle and Fogg, 1997).

Eigensystem Analysis

MCMOD performs an eigensystem analysis because development of a continuous-lag Markov
chain as a geostatistical model of spatial variability may require the following mathematical
calculations:

î evaluate thematrix exponentialform of Markov chain given by (6),

î evaluate thematrix logarithmof a transition probability matrix given by (9), and

î convert a discrete-lag Markov chain to a continuous-lag Markov chain by combining (6)
and (9).

As shown above, (6) and (9) cannot be computed directly from the matrix entries. In either
situation, the key step is to find the eigenvalues of+è orAEûèä, which can be computed using
codes for real general matrices as given by Smith and others (1976) or Press and others (1992).

For notational simplicity, let lagû ' ûè and+ ' +è. A square (g ûg) matrix such as+
can be expressed in diagonal form with respect to its eigenvalues by

+ '
g[
&'�

b&~& (10)

where theb& for & ' �c éééc g denote the eigenvalues of+, and~& denotes a spectral compo-
nent matrix associated with each eigenvalueb&. The spectral component matrices~& can be
determined directly from the eigenvalues and matrix+ by

~& '

T
6õ'&

Eb6Wý+äT
6 õ'&

Eb6 ý b&ä & ' �c éééc g (11)
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whereW denotes the identity matrix. The continuous-lag Markov chain (6) then can be computed
from

A Eûä '
g[
&'�

i T Eb&ûä~& (12)

through application of Sylvester’s theorem (Agterberg, 1974, p. 406-412). The value of one
eigenvalue of+ will be zero, and the remaining eigenvalues will be negative (to ensure the
negative diagonal transition rates). Recognizing that (12) represents a canonical form ofA Eûä,
two useful conclusions can be drawn for the Markov chain model:

1. The eigenvaluesw&Eûä of AEûä relate to the eigenvaluesb& of + by

w&Eûä ' i T Eb&ûä or b& '
*? w&Eûä

û
;& ' �c éééc g (13)

2. Both+ andAEûä have identical spectral component matrices~&.

As a result, if a Markov chain model is assumed, a transition probability matrixAE{ûä for
a discrete lag{û can be used to compute+ by applying (13) to (10) to obtain

+ '
g[
&'�

*? w&E{ûä

{û
~& (14)

wherew&E{ûä and~& are the eigenvalues and spectral component matrices, respectively, cor-
responding toAE{ûä. Application of (14) to (6) yields

AEûä '
g[
&'�

w&E{ûä
û*{û~& (15)

which represents a continuous-lag version of the more commonly used discrete-lag Markov
chain model (8). The clear advantage of (15) over (8) is the continuous functional representa-
tion of the model, that is, the ability to calculateAEûä at anyû, not just integer multiples of
{û. Expression (12) shows that a Markov chain model corresponds to a linear combination of
exponential functions. Nonetheless, rather nonexponential looking structures can be obtained
from a Markov chain model, as evident in some of the off-diagonal transition probabilities for
the examples given.

Considering that one eigenvalue of+, sayb�, has a value of zero, the corresponding eigen-
valuew�Eûä of AEûä has a value of unity for allû. The entries of the spectral component matrix
~� correspond to the proportionR& of the column category such that

~� '

57 R� ü ü ü Rg
...

...
R� ü ü ü Rg

68
Considering (12) and that the other eigenvaluesb2c éééc bg are negative such that*ð4

û<"
i TEb&ûä '

f for & ' 2c éééc g, then~� establishes the sill of the Markov chain model as given by (5).
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Properties

The transition rate matrix has some important theoretical properties useful in model develop-
ment:

î The transition rate corresponds to theslopeof the transition probability as it approaches lag
zero

oæ&cè '
Y|Eü$ fä

Yûè
(16)

î The diagonal entries are negative (oææcè ÷ f), and the off-diagonal entries are (usually)
non-negative (oæ&cè è f ;& 9' æ), which ensures thatf é |æ&Eûèä é �.

î The diagonal entriesoææcè are related touæcè, the mean length of categoryæ in the direction
è, by

oææcè ' ý �

uæcè
(17)

For example, the mean ‘‘thickness’’ [mean length in the vertical (5) direction] of categoryæ
corresponds touæc5, so that a diagonal transition rateoææc5 can be established by

oææc5 ' ý �

uæc5

î The row sums must equal zero

g[
&'�

oæ&cè ' f ;æ (18)

such that the diagonal entry is equivalent to the negative of the sum of the off-diagonal row
entries

oææcè ' ý
g[
& õ'æ

oæ&cè ;æ

which ensures that
gS
& õ'æ

|æ&Eûèä ' � for all æc & according to probability law.

î The column sums must obey

g[
æ'�

Ræoæ&cè ' f ;& (19)

which ensures that the transition matrix converges on the specified proportions,|æ&Eûè $
4ä ' R&, as expected for a stationary Markov chain.

Background Category

Probability law and knowledge of proportions can be exploited inMCMOD by specifying
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one category as ‘‘background.’’ Usually proportions are knowna priori, such that the row and
column summing constraints (18) and (19) can be applied to eliminate the need to specify one
column and one row of transition rates. For example, in a four-category system, onlyôûô ' b
transition rates need to be established instead ofeû e ' �Sé

Multidimensional Markov Chains

2-D or 3-D Markov chain models can be developed by assuming that spatial variability in any
direction can be characterized by a 1-D Markov chain (Switzer, 1965; Lin and Harbaugh, 1984;
Politis, 1994). Although this may seem like a tenuous theoretical leap, the assumption here
is merely that Markov chains might characterize spatial variability not only in the vertical but
in other stratigraphic directions such as dip or strike. In a typical geologic application, data
coverage usually is inadequate to directly develop a 1-D Markov chain model for each of the
infinity of directions. Alternatively, model development can focus on the principal directions,
say the strike (%), dip (+) and vertical (5). Then 1-D Markov chain models for any direction
can be interpolated from the principal direction models.2

Considering that the transition probability matrixAEûèä for an arbitrary directionè depends
entirely on+è, the interpolation of Markov chain models can be accomplished by ellipsoidally
interpolating entries in the transition rate matrices for the principal%c + and5 directions by

moæ&cè m '
vë

û%
ûè
oæ&c%

ê2

n

ë
û+
ûè
oæ&c+

ê2

n

ë
û5
ûè
oæ&c5

ê2

;æc & 9' q (20)

whereq denotes the background category,û%c û+ andû5 are the%c + and5 direction components
of ûè '

s
û2% n û

2
+ n û

2
5. The remaining entries in+è involving æ or & ' q can be determined

by applying (18) and (19). For the negative lag vector components, sayû3%, entries from the
rate matrix+3% corresponding to the opposite directioný% are defined by

oæ&c3% '
ë
R&
Ræ

ê
o&æc%

and used in (20) in place of entries for+%, in accordance with the backward Kolmogorov
differential equation (Agterberg, 1974, p. 455-456).

The Determinant - A Measure of Statistical Closeness

The lateral extent of the 3-D Markov chain model output byMCMOD must be finite, with lim-
its that consider statistical closeness. Kriging-based algorithms, which do not consider cross-
correlations, easily rank statistical closeness by the magnitude of the variogram (or covariance)
model or a prescribed search radius with anisotropy ratios. However, the ranking of a full
cross-correlation matrix for multiple categories is not so straightforward.

2 We make no claim that non-negative definiteness is guaranteed for the three-dimensional Markov chain models. However, 1-D non-
negative definiteness is ensured for each of the principal directionè models by maintaining real and non-positive eigenvalues for+è. Our
experience has shown that the transition probability-based cokriging equations implemented in TPSIM, although singular, are solvable by
singular value decomposition.

carle1
Cross-Out
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A ranking of statistical closeness is needed not only inMCMOD , but also for the search
and simulated quenching algorithms inTSIM (next chapter). A generalized method is needed
for the following reasons:

î Different categories will have different correlation lengths and anisotropy ratios.

î Experience has shown that users tend to undervalue lateral:vertical anisotropy ratios when
manually specifying degree of spatial continuity.

As such, T-PROGS utilizes a mathematically-based measure of statistical closeness, the
determinant.

The determinant of a transition probability matrixAEûä, is the product of its eigenvalues
w&Eûä

_i| dAEûäo '
g

á
&'�

w&Eûä

For a Markov chain model,w&Eûä ' i T Eb&ûä, whereb& are the& ' �c éééc g eigenvalues of
the transition rate matrix+. Considering that oneb& is zero and others are negative (for the
real part), then the non-zero eigenvalues of+ obey *ð4

û<"
w&Eûä ' f, such that

*ð4
û<"

_i| dAEûäo ' f

At lag zero (û ' f) all eigenvalues ofAEfä equal unity, such that

_i| dAEfäo ' �

Therefore, for any lag vectorü

_i| dAEfäo è _i| dAEüäo è _i| dAE4äo

and
� è _i| dAEüäo è f

which suggests that_i| dAEüäo can be used to rank the statistical closeness of two locations
separated by a lag vectorü. A determinant value near unity indicates an strong correlation
between the two points, whereas as determinant value near zero indicates a lack of correlation.

In practiceMCMOD andTSIM utilize theEgý�ä root of_i| dAEüäo (the geometric mean
of the eigenvalues not associated with the sill) instead of the actual determinant. This reduces
dependency of the closeness statistic on the number of categories. Values ofE_i| dAEüäoä

�
g3�

ranging between 0.1 and 0.01 are recommended as limits for the 3-D model.

Application

Development of a Markov chain model of spatial variability focuses on establishing the entries
oæ&cè in the transition rate matrix+è. In straightforward mathematical terms, this can be viewed
as estimation of the slopesY|æ&Eü<fä

Yûè
(or tangents at the origin) for all entries|æ&Eûèä in the

transition probability matrixA Eûèä é
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Selecting the Background Category

As stated above, application of the background category concept eliminates the need to specify
one row and column of transition rates. In general, the background category may be selected
according to geologic interpretation as the category that fills in the space not occupied by other
categories. For example, in a fluvial depositional system consisting oflag, channel, levee, and
flood plain deposits, theflood plain facies would be a logical choice for background because it
has the lowest energy of deposition and, therefore, fills in accommodation space not otherwise
occupied by higher energy facies.

Choosing the Approach

MCMOD can generate one-dimensional Markov chains by either (1) direct quantitative means,
(2) estimation ofY|æ&Eü<fä

Yûè
corresponding to the slope of the transition probability as lag ap-

proaches zero, (3) direct fitting to data, or (4) interpretation of juxtapositional tendencies. As a
result, five different modeling approaches can be implemented withMCMOD :

1. Transition Rates – Prescribe the actual transition rates.

2. Discrete Lag– Honor transition probability data for a particular (discrete) lag .

3. Embedded Transition Probabilities – Interpret transition rates relative to an embedded
transition probability matrix.

4. Embedded Transition Frequencies– Interpret transition rates relative to an embedded
transition frequency matrix.

5. Independence- Interpret transition rates relative to ‘‘independent’’ or ‘‘maximum entropy
(disorder)’’ juxtapositional tendencies.

The choice of approach will depend on the particular application or style of interpretation.
The fact that many approaches are available exemplifies the flexibility of the Markov chain as
a model of spatial variability. Various modeling situations are given below, for which the most
conducive approaches are recommended.

Sparse Data

Most practical data sets yield noisy looking transition probability (or indicator cross-variogram)
measurements, particularly for the lateral directions. The traditional geostatistical model devel-
opment approach of empirical curve-fitting can easily lead to overcomplicated structures and
inconsistencies with mathematical and probability theory. Alternatively, the Markovian model
soundly addresses mathematical and probability theory while offering an interpretive frame-
work for defining model parameters. The assumption of a Markov chain may be viewed as
a conceptual simplification, that the spatial variability depends on values at nearest locations
(first-order stochastic). One can develop a Markov chain (first-order) model from parameters
conducive to integration of geologic insight: proportions, mean length, and juxtapositional ten-
dencies. Noisy data typically do not support a more complicated (higher-order) model, unless
supported by ancillary or interpretive information.
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Recommendation:
Embedded Transition Probabilities- Prescribe cross (off-diagonal) transition rates in terms of conditional
probabilities of embedded occurrences. For example, ‘‘Given an embedded occurrence of clay, what is the
probability that sand occurs directly above?’’ Prescribe auto (diagonal) transition rates by mean lengths.
Transition Rates - Infer the slope or fit (interpolate) the tangent line of transition probability curve as

lag approaches zero as per (16); these slope values directly translate to transition rates. Use this approach
in conjunction with the embedded transition probability approach (through examination of the debugging
file) to infer whether the prescribed transition rates are geologically plausible.

No Data

The Markovian framework is particularly conducive to development of models of spatial vari-
ability from conceptual information and, thus, is well-suited to situations lacking any data at all.
For example, one can use geologic information or other insights on facies proportions, mean
lengths, and juxtapositional tendencies to establish a geologically plausible model of spatial
variability.

Recommendation:
Embedded Transition Probabilities - Prescribe cross-transition rates by estimating conditional proba-

bilities of embedded occurrences according to geologically plausible juxtapositional tendencies. Prescribe
auto-transition rates by estimated mean lengths.

Abundant Data

Given abundant data, the measured transition probabilities may display Markovian properties
and define a smooth curve (without scatter). This situation might occur for numerous, finely-
spaced data, such as continuous logs obtained from multiple boreholes penetrating the same
geologic system.

Recommendation:
Discrete Lag– Use transition probability data at one (discrete) lag to establish the model at all lags.
Transition Rates– Infer the slope of the transition probability as the lag approaches zero; the slope values
directly translate to transition rates as indicated by (16).

Interpretation Relative to Statistical Independence or Maximum Entropy (Disorder)

A main motivation for performing statistical analysis of bedding successions has been to quan-
tify interpretation of juxtapositional tendencies, to address questions such as, ‘‘Does siltstone
tend to occur above sandstone (versus claystone or conglomerate).’’ A standard is needed for
judging whether a juxtapositional tendency is greater or lesser than ‘‘random.’’ This can be
based on statistical ‘‘independence,’’ for which the frequency of occurrence of a pairs of events
depends on the product of the marginal frequencies of the two events. Theoretically, statistical
independence is identical to the maximum entropy concept, wherein a spatial arrangement of a
given number of categories exhibits a state of maximum disorder.

Recommendation:
Independence– Set cross-transition rates relative to the independent (maximum entropy) model. Set

auto-transition rates according to mean lengths. Use this approach primarily to interpret whether the data
or model exhibit significantly nonrandom juxtapositional tendencies.
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Transition Frequency/Count Data

The raw data used in an embedded Markov chain analysis consists of transition counts, for ex-
ample, the number of observations of siltstone occurring over sandstone. These values may be
normalized by the sum of the entire matrix to obtain transition frequencies, or the row sum to
obtain transition probabilities. Recall that transition frequencies, rather than transition prob-
abilities, are used in the assessment of statistical independence and, thus, represent a more
fundamental statistic.

Recommendation:
Transition Frequencies– Prescribe transition frequencies or counts for off-diagonal entries, mean lengths
for diagonal entries.

Direct Quantitative Interpretation

Transition rates can be interpreted directly in terms of a conditional rate of change per unit
length. The auto-transition rates are negative because the auto-transition probability at an in-
finitesimal lag is less than unity (the auto-transition probability at lag zero). Similarly, the
transition rates to other categories are usually positive because the cross-transition probabili-
ties at an infinitesimal lag are expected to be greater than zero (the cross-transition probability
at lag zero). Specifically,oæ&cè denotes, given an occurrence ofæ, the rate at whichæ transitions
to & per unit length in a directionè. For example, ifæ is very continuous in the directionè (æ
possesses a very large mean length),oææcè will be negative and very small in magnitude, and
oæ&cè for & 9' æ will be positive but smaller in magnitude thanoææcè, particularly if& tends not
to occur adjacent toæ. The summing constraint (18) maintains adherence to probability law by
prescribing that the auto-transition rates equal the negative of the sum of the cross-transition
rates.

Recommendation:
Transition Rates– Directly prescribe transition rates in terms of conditional rate of change per unit length
or by estimation of the slopesCwmn+k$3,Ck!

(or tangents at the origin).
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Description of Approaches

1. Transition Rates

The transition rates are the entriesoæ&cè in +è of the equation describing a continuous-lag
Markov chain (6). The transition rates can be interpreted as the slope of the tangent of the
transition probability curve as the lag approaches zero, as indicated by (16). Thus, one approach
to developing a transition rate matrix would be to estimate the slopesY|æ&Eü<fä

Yûè
indicated by

transition probability data. For example, a 4-category (debris flow, floodplain, levee, channel)
vertical transition rate matrix could be established as

+5 '

5997
ýféH. ú fé�f féfSS
ú ú ú ú

féfôf ú ý�é2ô fé�2
féfôb ú fé.b ýféH2

6::8m3� (21)

by estimation of the slopesY|æ&Eü<fä

Yûè
. Recall that row and column sums of+è should obey (18)

and (19), which can be achieved by employing the background category concept. The entries
for the row and column involving category 2, the background category, need not be specified.
Note that the diagonal entries are negative, and the off-diagonal entries are non-negative. To
avoid negative or above-unity probabilities, these sign conventions are recommended! Figure
12 shows the Markov chain model resulting from this transition rate matrix.

2. Discrete-lag Approach using Transition Probability Data at a Particular Lag

MCMOD employs an eigensystem analysis of (9) to establish a transition rate matrix from
transition probability data at a particular lag, where{ûè would be chosen within the range of
correlation. For example, the vertical (5)-direction transition probability matrix

AE{û5 ' féS mä '

5997
féS�H2 fé2Hb2 féfD2b féfôb.
féfô2D féHfS� féf.H. féfH2S
féf�b2 féôH�. féD2DH féf.2.
féf�SH féfbbD fé2ôDb féSe.H

6::8
was used to compute the transition rates in (21) by (9) to obtain the model shown in Figure 12.

3. Transition Probabilities of an Embedded Markov Chain Analysis

An embedded Markov chain analysis evaluates the conditional probabilities of discrete occur-
rences of geologic units occurring adjacent to others in a particular direction (see Figure 2). For
example, theembeddedtransition probabilitiesZæ&c5 in the vertical (5) direction are defined as

Zeôc5 ' èh i,eñee occurs abovem Sû@??e, occurs belowj
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Figure 12. Matrix of transition probability data fit by Markov chain using discrete-lag approach at 0.6 m lag.

Consequently, an embedded transition probability matrixá5 could be constructed as

á5 '

5997
ý féHfô fé�2e féf.ô

fé�.S ý féôbf féeôe
féf2S féHeS ý fé�2H
féfeD féfDH féHbS ý

6::8 (22)

Note that auto (diagonal)-transitions are considered unobservable, thus, the diagonal entries are
absent. From an interpretive standpoint, note in (22) thatZeôc5 :: Ze�c5 andZeôc5 :: Ze2c5,
which indicates thatleveetends to occur abovechannel.

With the additional information of mean lengthuæc5, the entries of an embedded transition
probability matrix can be translated into entries in a transition rate matrix by

oæ&c5 '
Zæ&c5

uæc5
(23)

The transition rates in (21) are related to the embedded transition probabilities in (22) by (23).
Thus, one approach to developing a transition rate matrix can be to (a) establish an embedded
transition probability matrix from either data or geologic interpretation of juxtapositional ten-
dencies, (b) establish mean lengths, and (c) convert the embedded transition probabilities to
transition rates by (23).

Note that the off-diagonal entriesoæ&c5 defined by (23) satisfy (17) and (18) because

g[
&'�

Zæ&c5 ' �

If a background category is assumed,the row and column entries involving the background
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Figure 13. Markov chain model fit to matrix of transition probability measurements by using option 3 to
adjust embedded transition probabilities. Markov chain model based on independent or ‘‘maximum entropy’’
juxtapositional tendencies shown by dashed line.

category do not need to be specified(set them to zero). A revised+5 was established from
embedded transition probabilities and mean lengths by5997

u�c5 ' �é�D ú fé�2 féf.D
ú ú ú ú

féf2D ú uôc5 ' féH2 fé�f
féfe ú fébS uec5 ' �é2e

6::8 (24)

where the diagonal entries are converted to transition rates by (17), the off-diagonal entries are
converted to transition rates by (23), and category 2 is assumed as background (why row 2 and
column 2 entries are set to any number). The resulting Markov chain model shown in Figure
13 fits the transition probability measurements slightly better than the initial model shown in
Figure 12.

4. Transition Frequencies of an Embedded Markov Chain Analysis

An embedded Markov chain analysis may also be performed in terms of embedded transition
frequenciessæ&cè defined, for example in the vertical (5) direction, as

seôc5 ' èh i,eñee occurs above andSû@??e, occurs belowj
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An embedded transition frequency matrix65 could be formulated as

65 '

5997
EféfHe�ä féfS.. féf�f� féffSô
féfS.2 EféôeSHä fé�2Se fé�.�ô
féffHD fé2b.� EféôôbDä féfôef
féffHD féffff fé2fô� Efé2��Dä

6::8
where the diagonal entries (in parenthesis) are the row and column sums corresponding to mar-
ginal frequenciessæc5 of embedded occurrences of categoryæ

sæc5 '
g[
& õ'æ

sæ&c5 '
g[
& õ'æ

s&æc5 (25)

With the additional information of mean lengthuæc5, the transition frequencies can be con-
verted to transition rates by

oæ&c5 '
sæ&c5

sæc5uæc5
;& 9' æ (26)

Analogous to (24),MCMOD can establish the rate matrix from transition frequencies in
the off-diagonal entries by5997

u�c5 ' �é�D ú féf�f� féffSô
ú u�c5 ' 2é2.é ú ú

féffHD ú uôc5 ' féH2 féfôef
féffHD ú fé2fô� uec5 ' �é2e

6::8
Although off-diagonal entries for the background row and column do not need to be speci-
fied, this approach requires a mean length for the background categorybecause the marginal
frequencies depend on the proportions and mean lengths for all categories.

5. ‘‘Independent’’ or ‘‘Maximum Entropy’’ (Disorder) Transition Frequencies

The juxtapositional tendencies in a geologic system reflect some degree of order (or disorder)
in the bedding sequences. The disorder of the juxtapositional tendencies in a particular direc-
tion, sayè, can be quantified by the entropy7è of bed-to-bed transition frequenciessæ&cè, the
probabilities that one bed occurs next to another, by

7è ' ý
[
æ

[
&

sæ&cè *? sæ&cè (27)

(Hattori, 1976). Consider the question, ‘‘What would the bedding look like for a maximally dis-
ordered system?’’ From this state of reference, one might be able to judge whether the observed
bedding sequence exhibits nonrandom juxtapositional tendencies, that is, some preferentialor-
der.

In applyingembeddedMarkov chain analyses, geologists have been interested in quantify-
ing their interpretations of facies successions, particularly in the vertical direction. ‘‘Random’’
or independent transition frequencies for a succession involving four categories of beds would
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obey 5997
s�s� s�s2 s�sô s�se
s2s� s2s2 s2sô s�se
sôs� sôs2 sôsô sôse
ses� ses2 sesô sese

6::8 (28)

wheresð denotes the ‘‘marginal’’ frequency that a bed of categoryð occurs in the succession (the
directionè is implied for notational simplicity). However, the problem is not so straightforward
in practice. Usually, self-transitions (between two beds of the same category) are unobservable
(particularly from borehole data), so that not only the diagonal transition frequencies but also
the marginal frequencies cannot be directly evaluated. Off-diagonal transitioncountscan be
estimated accurately, because transitions from one category to adifferent category are observ-
able.

Assuming that self-transitions are unobservable, a more practical problem is posed. Instead,
one analyzes observations of off-diagonal transition frequencies#æ&, which are defined as the
transition counts divided by the sum total of all the off-diagonal transition counts5997

ý #�2 #�ô #�e
#2� ý #2ô #2e
#ô� #ô2 ý #ôe
#e� #e2 #eô ý

6::8
Self-transitions are unobservable, so the diagonal entries are left blank. The objective of the
independent transition frequencies (Turk, 1979; Turk, 1982; Johnson and Pattie, 1993) is to find
thesð’s that satisfy

�

A

g[
æ õ'ð

sðsæ '
g[
æ õ'ð

#ðæ ;ð ' �c éécg (29)

whereA '
gS
ð'�

gS
æ õ'ð
sðsæ. The non-linear system of equations (29) can be solved by the method

of iterative proportion fitting (IPF) (Johnston and Pattie, 1993; Carle, 1997a). The resulting
independent model will display the same marginal frequencies ofembeddedoccurrences#ð,
where

#ð '
g[
æ õ'ð

#ðæ ;ð ' �c ééc g

The off-diagonal transition frequencies will be independent with respect to the estimatedsð’s.
Continuous lag Markov chain models can be linked to this model of independency by noting
that#ð is proportional to proportionsRð divided by mean lengthuð such that

Rð
uð
2 #ð ;ð ' �c ééécg

Thus, given a set of proportions and mean lengths, a continuous lag Markov chain with inde-
pendent transition frequencies can be derived.

So a more specific question arises, ‘‘For the given proportions and mean lengths, what is
the transition frequency matrix that maximizes entropy as defined in (27) ?’’ It so happens
that the concept of statistical independence yields the same result as maximum entropy. The
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resulting independent or maximum entropy transition frequency matrix6
E74@ ä
5 corresponding

to the proportions and mean lengths of the previous examples is

6E74@ ä
5 '

5997
EféfHe�ä féfô.. féfô�� féf�D2
féfô.. EféôS.�ä fé2�bS fé�f.D
féfô�� fé2�bS EféôôbSä féfHHH
féf�D2 fé�f.D féfHHH Efé2��Dä

6::8
where the diagonal entries represent the row/column totals or marginal frequencies. This matrix
can be used as a basis for interpretation of juxtapositional tendencies relative to a maximally
disordered bedding succession for the same proportions and mean lengths. For example, if an
observed transition frequencyseôc5 is greater thans E74@ ä

eôc5 , then one might conclude that there
is a statistical tendency forleveeto occur abovechannel.

One can develop a transition rate matrix by (a) establishing proportions and mean lengths,
(b) computing the maximum entropy transition frequency matrix6

E74@ ä
5 and corresponding

transition rates, and (c) interpreting the off-diagonal transition rates relative to the maximum
entropy transition rates. For example, applying (26), a maximum entropy transition rateo

E74@ ä
æ&c5

can be computed by

o
E74@ ä
æ&c5 '

s
E74@ ä
æ&c5

uæc5
S
& õ'æ

s
E74@ ä
æ&c5

The vertical transition rate matrix (21) can be formulated relative to the maximum entropy
transition ratesoE74@ ä

æ&cè as

+E74@ ä
5 '

5999997
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6:::::8 (30)

By this approach off-diagonal transition rates are established by multiplyingo
E74@ ä
æ&c5 by a co-

efficient: greater than unity indicates that the two categories tend to occur next to each other;
lesser than unity indicates that the two categories tend not to occur next to each other.

The maximum entropy concept is particularly useful for interpreting juxtapositional ten-
dencies of an existing Markov chain model. For example, one can take the proportions and
mean lengths established by the existing model, say (21), then generate a Markov chain model
with maximally disordered juxtapositional tendencies for those mean lengths and proportions
(which establish the marginal frequencies of embedded occurrences). Comparison of transi-
tion probability measurements with the maximum disorder model can then be used to interpret
whether the stratigraphy exhibits some degree of order in the juxtapositional tendencies.MC-
MOD can be used to establish the maximum entropy Markov chain model, shown in Figure 13,
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for the given proportions and mean lengths in the previous examples by specifying for option 55997
u�c5 ' �é�D �éf �éf �éf

�éf u2c5 ' 2é2. �éf �éf
�éf �éf uôc5 ' féH2 �éf
�éf �éf �éf uec5 ' �é2e

6::8
where setting the off-diagonal coefficients equal to unity yields the maximum-entropy transition
rates.The mean length must be specified for@,, categories including the background category.

The symmetric three-category case.In the special case of three categories with an as-
sumption of symmetry, the maximum entropy system of equations reduces to 3 equations (the
row/column summing constraints) and 3 unknowns (the symmetric off-diagonal transition fre-
quencies). Therefore, the juxtapositional tendencies will always appear as ‘‘maximum entropy’’
for the given proportions and mean lengths. This situation illustrates the possible conflict be-
tween geological and statistical interpretations of maximum disorder. For example, consider
a system with three facies: channel, levee, and a large proportion of floodplain deposits. A
geologist would expect that levee deposits tend to occur laterally adjacent to the channel de-
posits and not haphazardly throughout the floodplain. Conversely, the location of the levee
deposits could be viewed as tending to occur laterally adjacent to the floodplain deposits. If
the levee deposits did in fact occur haphazardly throughout the floodplain, the effect would be
to reduce the mean length of the floodplain deposits, i.e. the floodplain deposits would be less
laterally extensive. Thus, in a geologic interpretation of the relative disorder of juxtapositional
tendencies, one may also need to make comparisons of entropy allowing for one or more facies
(particularly the background category) to vary in mean length.

Parameter File

The parameter file forMCMOD consists of four parts: (a) parameters common to the 3-
D model, (b) parameters describing the%-direction model, (c) parameters describing the+-
direction model, and (d) parameters describing the5-direction model. The formats describing
each%c +c 5-direction model are identical. Figure 14 shows an example parameter file for a
four-category application using options 1 and 2. The parameters are described in further detail
in Table 6. Figure 15 shows another example parameter file using options 3 and 4.
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Line Description
1 number of categories
2 proportions for each category (should add up to unity!)
3 background category (highly recommended, but can be set at zero if not used)
4 file name for debugging file
5 file name for 3-D Markov chain model produced in binary grid (.bgr) format
6 file name for determinant file used later inTSIM to determine statistical closeness
7 {> |> } lateral extent of 3-D model in terms of determinant
8 {> |> } lag spacing for 3-D model (same as for conditional simulation byTSIM )
9 {-direction output file name for 1-D Markov chain model
10 {-direction number of lags, lag spacing
11 {-direction modeling approach (option 1 in this example)
12 row 1 entries for{-direction transition rate matrix
13 row 2 entries for{-direction transition rate matrix
14 row 3 entries for{-direction transition rate matrix
15 row 4 entries for{-direction transition rate matrix
16 |-direction output file name for 1-D Markov chain model
17 |-direction number of lags, lag spacing
18 |-direction modeling approach (option 1 in this example)
19 row 1 entries for|-direction transition rate matrix
20 row 2 entries for|-direction transition rate matrix
21 row 3 entries for|-direction transition rate matrix
22 row 4 entries for|-direction transition rate matrix
23 }-direction output file name for 1-D Markov chain model
24 }-direction number of lags, lag spacing
25 }-direction modeling approach (option 2 in this example)
26 transition probability data file
27 lag number for developing Markov chains from transition probability data

Table 6. Description of parameter file shown in Figure 13.

4                                          /# of categories
0.066 0.565 0.190  0.179                   /proportions
2                                          /background category
../llnl/tp/mcmod1_2.dbg                    /name of debugging file
../llnl/tp/tpxyz1_2.bgr                    /output file for 3-D model
../llnl/tp/det1_2.bgr                      /output file for determinant
0.05   0.05 0.05                           /determinant extent for 3-D model
3.0 10.0  0.30                             /dx,dy,dz for 3-D model
../llnl/tp/llnltpxm1_2.eas                 /X-direction output file
200     1.                                 /X-Direction: # lags, spacing
1                                          /option: 1=r,2=d,3=etp,4=etf,5=i
 -0.125  0.    -1.    -1.                  /row 1 transition rates
  0.     0.     0.     0.                  /row 2 transition rates
  0.0042 0.    -0.167 -1.                  /row 3 transition rates
  0.004  0.     0.084 -0.100               /row 4 transition rates
../llnl/tp/llnltpym1_2.eas                 /Y-direction output file
200     2.5                                /Y-Direction; # lags, spacing
1                                          /option: 1=r,2=d,3=etp,4=etf,5=i
 -0.042  0.     0.0036 0.0022              /row 1 transition rates
  0.0    0.     0.     0.                  /row 2 transition rates
  0.0013 0.    -0.050  0.016               /row 3 transition rates
  0.0008 0.     0.017 -0.020               /row 4 transition rates
../llnl/tp/llnltpzm1_2.eas                 /Z-direction output file
200   0.1                                  /Z-Direction: # lags, spacing
2                                          /option: 1=r,2=d,3=etp,4=etf,5=i
../llnl/tp/llnl1195tpz.eas                 /data file
2                                          /lag#

Figure 14. Example parameter file for MCMOD using options 1 and 2.
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4                                          /# of categories
0.066 0.565 0.190  0.179                   /proportions
2                                          /background category
../llnl/tp/mcmod3_4.dbg                    /name of debugging file
../llnl/tp/tpxyz3_4.bgr                    /output file for 3-D model
../llnl/tp/det3_4.bgr                      /output file for determinant
0.05   0.05 0.05                           /determinant extent for 3-D model
3.0 10.0  0.30                             /dx,dy,dz for 3-D model
../llnl/tp/llnltpxm3_4.eas                 /X-direction output file
200     1.                                 /X-Direction: # lags, spacing
3                                          /option: 1=r,2=d,3=etp,4=etf,5=i
8.0     0.   -1.   -1.                     /row 1 embedded tp’s & ml’s
0.      0.    0.    0.                     /row 2      ’’
0.025   0.   6.0   -1.                     /row 3      ’’
0.040   0.   0.84   10.                    /row 4      ’’
../llnl/tp/llnltpym3_4.eas                 /Y-direction output file
200     2.5                                /Y-Direction; # lags, spacing
4                                          /option: 1=r,2=d,3=etp,4=etf,5=i
24.     0.   -1.     -1.                   /row 1 embedded tf’s & ml’s
0.     62.81  0.      0.                   /row 2      ’’
0.0095  0.   20.0    -1.                   /row 3      ’’
0.0058  0.    0.1208 50.                   /row 4      ’’
../llnl/tp/llnltpzm3_4.eas                 /Z-direction output file
200   0.1                                  /Z-Direction: # lags, spacing
3                                          /option: 1=r,2=d,3=etp,4=etf,5=i
1.15  0.    0.12  0.075                    /row 1 embedded tp’s & ml’s
0.    0.    0.    0.                       /row 2      ’’
0.025 0.    0.82  0.10                     /row 3      ’’
0.04  0.    0.96  1.24                     /row 4      ’’

Figure 15. Example parameter file for MCMOD using options 3 and 4.

Implementation Notes

î Line 3 – If the background category is not used (set at zero), a 3-D model will not be
produced.

î Line 6 – The determinant is the product of the eigenvalues. For a Markov chain,_i| dAEfäo '
� and_i| dAE4äo ' f. In general, try values ranging from 0.01 to 0.1 – the smaller the num-
ber, the greater the lateral extent; the greater the lateral extent, the larger the array size for
the 3-D transition probability model, which, as stated earlier, is afive-dimensional array.
The actual array size will depend on the Markov chain model parameters (primarily mean
length) and lag spacing (line 7).

î Line 7 – Anticipate thatTSIM will assume the lag spacing of the 3-D Markov chain model
is the same as the grid spacing for generating the realizations.MCMOD runs fast, so re-
runningMCMOD with revised lag spacing is easily performed by editing line 7 as needed,
without changing any other parameters. One should consider that reducing grid spacing in
the conditional simulations will necessitate increased array size for the 3-D Markov chain
model. The determinant limit specification takes care of this adjustment automatically.

î 1-D files– The 1-D%c + and5-direction model files are produced independently of the 3-D
Markov chain model. Thus, very small lag spacings can be prescribed for the 1-D models,
which are useful for graphing the models as continuous functions.

î Option 2 – If an option other than ‘2’ is chosen in line 25 as given in Table 6, the input
format would replace lines 26-27 with four (g) lines describing the parameters of each row
of the transition rate matrix.

î Options 3 through 5– These options permit establishment of the transition rates by more
interpretable methods than options 1 and 2. In each of these options, thediagonal transition
rates will be established indirectly by prescribing values ofmean length.
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î Background Category– The background category concept eliminates the need to specify
entries in the background category row and column, except for the diagonal (mean length)
entry in options 4 and 5.

î Symmetry– One can enforcesymmetryin opposing pairs of off-diagonal transition rates by
setting oneof the opposing entries equal to negative unity (-1.0). Thus, if all juxtapositional
tendencies are assumed symmetric, one can focus on establishing transition rates for either
the lower or upper off-diagonal entries; the opposing off-diagonal entries can all be set to
-1.0.

Include File

The file mcmod.inc is used to set the dimensions of arrays used inMCMOD . If not familiar
with the dimension settings, the user should checkmcmod.inc, reset dimensions (if necessary),
and recompilemcmod.f(or).

Output

The output files ofMCMOD are a 3-D Markov chain model (line 5), which consists of a 5-D
array stored in the binary grid format, and a 3-D grid of determinant values (line 6). These two
grid files are used byTSIM for conditional simulation.

The one-dimensional%, +, and5-direction Markov chain model output files for (lines 9, 16,
and 23) are generated independently of the 3-D model to enable interpretation and comparison
with transition probability measurements along principal directions. It is recommended to gen-
erate the one-dimensional models at small lag spacings (usually smaller than the grid spacing
of the 3-D model) in order to adequately display the continuity of the Markov chain model.

Debugging File

After runningMCMOD , one should check the debugging file because it provides useful diag-
nostic information on the principal-direction and 3-D Markov chain models as follows:

î options used

î actual transition rates

î transition rates in terms of the more interpretive frameworks of options 3 through 5.

î eigenvalue and spectral component matrices

î 3-D model size and dimensions

This information is particularly useful for interpretation of juxtapositional tendencies and
for making adjustments to the model.

Model Adjustments

One might develop an initial model using options 1 or 2, then refine the model using the
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debugging output to help initialize the application of the other more interpretive options.

Negative Off-Diagonal Transition Rates

It is important to check fornegativeoff-diagonal transition rates, for which the debugging file
will include a warning message. Negative transition rates are likely to occur in a background
row or column as a result of a strongly positive juxtapositional tendency at another entry. Al-
though negative transition rates will surely lead to negative off-diagonal transition probabilities
at very small lags, it is possible that the off-diagonal transition probabilities at the discretization
of the 3-D model (and realizations) will remain positive. Thus, negative transition rates may
be acceptable in some situations; however, this presents a problem for the 3-D Markov chain
model interpolation scheme unless, the same entries are negative for all principal directions or
the negative rates occur only in the background row or column.
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Once the 3-D transition probability model and determinant grid files are established byMC-
MOD , it is a relatively simple to generate a conditional simulation usingTSIM .

Data in the GEOEAS format, such as the data file originally used to calculate transition
probabilities inGAMEAS , may ‘‘condition’’ the simulations. Variations in azimuthal and dip
directions of anisotropy can be incorporated by providinga priori grids of azimuth and dip
angles.

The primary advantage ofTSIM over other geostatistical algorithms is the incorporation of
all of the bivariate statistics (cross-correlations) in the simulation process, which enables repro-
duction of juxtapositional relationships including asymmetric patterns such as fining-upward
tendencies (Carle and Fogg, 1998).

Before runningTSIM , the user must

1. Generate 3-D transition probability model and measures of closeness (e.g., determinant), as
produced byMCMOD .

2. Set up a parameter file.

3. Check array dimension settings intsim.inc.

Theory

TSIM generates conditional (or unconditional) simulations through a two-step procedure of:

1. Generating an ‘‘initial configuration’’ using a cokriging-based version of the sequential in-
dicator simulation (SIS) algorithm (Deutsch and Journel, 1992).

2. Iteratively improving the conditional simulation in terms of matching simulated and mod-
eled transition probabilities by applying the simulated quenching (zero-temperature anneal-
ing) algorithm.

The two steps are mutually dependent because the SIS step alone will not yield stochastic
simulations that adequately honor the model of spatial variability, and the quenching step will
not succeed without a rudimentary initial configuration. Both the SIS and quenching steps
may rely on the same Markov chain model of spatial variability and, thus, are conducive to
implementation in succession.
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Sequential Indicator Simulation

The initialization step utilizes the sequential indicator simulation (SIS) algorithm described
by Deutsch and Journel (1992, p. 123-125, p. 148), except that a transition probability-based
indicator cokriging estimate is used to approximate local conditional probabilities by

èh i& occurs at f m ðæE kä; k ' �c éééc ù ; æ ' �c ééécgj ä
ù[
k'�
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whereù is the number of data,g is the number of categories,çæ&ck represent a weighting
coefficient, andðæE kä represents the value of an indicator variable

ðæE kä ' i �c if categoryæ occurs at k
fc otherwise æ ' �c éééc g

The transition probability-based cokriging system of equations (Carle, 1996; Carle and Fogg,
1996) for computing the weighting coefficients is57 AE � ý  �ä ü ü ü AE ù ý  �ä
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Use of cokriging instead of the traditional indicator kriging approach improves consideration
of spatial cross-correlations.

Simulated Quenching

Starting from a SIS-generated initial configuration, the simulated quenching step is imple-
mented to improve agreement between measured and modeled transition probabilities. The
quenching step attempts to solve the optimization problem of
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where ‘‘ï’’ denotes an objective function, theü, denote, ' �c éééc� specified lag vectors, and
‘‘MEAS’’ and ‘‘MOD’’ distinguish measured and simulated (measured from the realization)
transition probabilities, respectively (Aarts and Korst, 1989; Deutsch and Journel, 1992, p.
159-160; Deutsch and Cockerham, 1994; Carle, 1997b). The simulated quenching algorithm is
implemented by repeatedly cycling through each nodal location of the conditional simulation
and inquiring whether a change to another category will reduceï; if so, the change is accepted.
This iterative improvement procedure continues untilï is minimized, or a limit on the number
of iterations is reached. Conditioning is maintained by not allowing changes of categories at



48 Chapter 7 TSIM

conditioning locations. ‘‘Artifact discontinuities’’ (Deutsch and Cockerham, 1994) are avoided
by generation of the initial configuration and including consideration for anisotropy and limiting
the number of lags in formulation of the objective function (Carle, 1997b).

Application

The conditional simulation procedure is somewhatad hocbecause it employs approximations
and localized optimization schemes, not exact mathematical procedures. In other words, the
simulation procedure remains somewhat of an ‘‘art.’’ Nonetheless, the art involved permits
considerable flexibility and potential for generating useful simulation results.

In runningTSIM two important parameters affect both execution time and the nature of the
simulation result:

î number of data used in the cokriging equations (for the SIS step)

î determinant limit, which controls the number of quenching lags.

Execution time in the SIS step is roughly exponentially proportional to the number of data
used in the cokriging equations. More cokriging data tend to produce more intricate heterogene-
ity patterns. Experience has shown that four to twelve data usually produce desirable results,
with less data favored to reduce execution time for applications with very large grids and large
numbers of categories. An even number of cokriging data is recommended because odd num-
bers (say three or five) may produce artifactual features as a result of a systematic asymmetry
in the data configuration.

For the quenching step, execution time is roughly linearly proportional to the number of
quenching lags. More quenching lags does not necessarily yield better results. Artifactual re-
sults, particularly near conditioning and edge locations, can be caused by over-emphasis on
fitting the simulated spatial variability to the model at large lags (Carle, 1997b). In general, it is
recommended to choose a determinant limit that ensures coverage by quenching lags in all prin-
cipal directions [e.g. lags with grid spacings of (1,0,0), (0,1,0), and (0,0,1)] and a reasonable
number of non-major directions [e.g., (1,1,0), (1,0,1), etc.], without an excess of redundancy
[e.g., (1,0,0),(2,0,0),...,(10,0,0)]. Exact specifications for determining a suitable determinant
limit cannot be given because this depends on the particular transition probability model and
grid spacing. In practice, a reasonable determinant limit can be chosen by mapping the de-
terminant grid. Otherwise,TSIM contains an internal check. If the determinant limit is too
large to encompass the smallest lag in a principal direction, say lag (1,0,0) for the% direction,
TSIM will automatically lower the determinant. Thus, if too high a determinant limit is en-
tered, say 0.99,TSIM will determine the largest acceptable determinant limit – a default value.
In practice, one might start quenching with the default value, then compare quenching results
for successively lower determinant limits.

Parameter File

An example parameter file forTSIM is shown in Figure 16, with parameters described in Table
7.
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4                                       /number of categories
0.066 0.565 0.190 0.179                 /proportions
../llnl/sim/simxyz.bgr                  /output file
1                                       /output format: 1=binary, 2=ascii
1                                       /debugging level
tpsim.dbg                               /debugging file
4175                                    /seed
1                                       /number of simulations
1966.3      -60      3.                 /xcenter, nx+, xsiz
3023.5      -30     10.0                /ycenter, ny+, ysiz
142.07      -60      0.3                /zcenter, nz+, zsiz
1  4                                    /ndmin, ndmax
1                                       /ibasis:0=cov,1=tp
0.001                                   /wratio
../llnl/tp/tpxyz.bgr                    /trans. prob. model file
../llnl/tp/det.bgr                      /determinant file
../llnl/data/llnl1195.eas               /input data file
-50. -50.                               /azimuths: coord, true
1.5 1.5                                 /dip:  coord, true
junkaz.bgr                              /azimuth int*1 file
junkdip.bgr                             /dip int*1 file
 4    0.00001  -1                       /maxit; tol; -1=weight,1=lag1
0.4                                     /quenching determinant limit

Figure 16. Example parameter file for TPSIM.

Line Description
1 number of categories
2 proportions
3 output file for grid
4 output format: 1=binary, 2=ASCII
5 debugging level: higher yields more information
6 debugging file name
7 seed for random number generator
8 number of simulations
9 {minimum; number of nodes in{ direction;{ node size
10 | minimum; number of nodes in| direction;| node size
11 } minimum; number of nodes in} direction;} node size
12 minimum and maximum number of data points used for cokriging estimates
13 basis function for cokriging estimates: 0=covariance; 1=transition probability
14 value for defining singularities in singular value decomposition (0.001 works fine)
15 transition probability model file name (generated byMCMOD )
16 determinant file name (generated byMCMOD )
17 input data file name (GEOEAS format)
18 fixed azimuths: coordinate system; stratigraphic
19 fixed dips: coordinate system; stratigraphic
20 specified azimuth direction file
21 specified dip direction file
22 quenching parameters: max# of iterations; tolerance; 1= closest lags only, -1=weight
23 determinant value prescribing spatial limit of quenching lags

Table 7. Description of parameters for TPSIM.

carle1
Cross-Out
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Implementation Notes

î Lines 3 and 8. Line 3 constitutes the root of the output file name. If multiple realizations
are requested by setting line 8 greater than one, then an integer signifying the realization
number will be appended to root of the output file name. For example, if line 3 = ‘‘simu-
lation.bgr’’ and line 8 = ‘‘3’’, then the output realizations will be namedsimulation.bgr1,
simulation.bgr2, andsimulation.bgr3. A maximum of 100 realizations can be requested.

î Lines 9-11. The coordinate system can also be specified relative to thecenterof the simu-
lated volume, rather than relative to the coordinate minima. The centered approach facilitates
model development in many applications because the center of a model is usually easier to
establish than the corners, particularly if the model coordinate system is rotated relative to
the data coordinate system. The centered approach can be implemented by specifyingneg-
ative numbers for the number of nodes relative to the center.

Line Description
9 { center;negativenumber of nodes in÷{ direction;{ node size
10 | center;negativenumber of nodes in÷| direction;| node sizeentry
11 } center;negativenumber of nodes in÷} direction;} node size

Thus, if ‘‘-20’’ is entered for the number of nodes in÷% direction, the number of nodes in
the%-direction of the simulation will be2û 2f n � ' e�, with % node2� centered at the ‘‘%
center.’’

î Line 13. The cokriging equations are actually solved using a basis function approach
(Carle, 1996). Selecting the covariance option implements simple cokriging, which will
de-emphasize trends in proportions (nonstationarity of the mean) in the simulation results.

î Line 14. For more details about solving linear systems of equations with singular value
decomposition, see Press and others (1992, p. 51-63).

î Lines 18-19. Set fixed values for coordinate system and stratigraphic azimuth and dip
directions, for example: (a) coordinate azimuth' fá, stratigraphic azimuth' fá; (b) coor-
dinate azimuth' 2fá, stratigraphic azimuth' fá; (c) coordinate azimuth' fá, stratigraphic
azimuth' 2fá; (d) coordinate azimuth' 2fá, stratigraphic azimuth' 2fá.

(a) (b) (c) (d)

-150 0 150
-150

0

150

-150 0 150
-150

0

150

-150 0 150
-150

0

150

î Lines 20-21. Optional binary grid files of integer values containing localazimuth direc-
tions rounded to nearest degree and localdip directions rounded to nearesttenth of a degree.
If not using these options, insert bogus file names. These grids must have identical dimen-
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sions as the simulation. This option enables generation of realizations with variable dip and
strike, as would result from structural features such as folds or geomorphic features such as
meandering or a radial pattern of deposition.

î Line 22. These are quenching parameters. No more than five quenching iterations are
usually necessary – too many iterations may produce unrealistic artifacts. If the number of
iterations is set at zero, then simulated quenching will not be performed. If the number of
iterations isnegative, then simulated quenching will be performed on existing realizations as
named by line 3. This feature is useful for examining different SIS and quenching schemes.
The tolerance limit sets a criteria for terminating quenching based on the value of the ob-
jective function as normalized relative to its initial value. The last parameter enables the
objective function to consider quenching lag vectors with components of no more than one
nodal spacing (set' �) or to weight quenching lags by the determinant value (set' ý�).

î Redundant data. If more than one datum fall within a grid block, the simulation honors
the first datum encountered in the data file.

Include File

The file TSIM.inc is used to dimension arrays ofTSIM . If not familiar with the dimen-
sion settings, the user should checkTSIM.inc , reset dimensions (if necessary), and recompile
TSIM.f(or) .

IMPORTANT! The three main 3-D arrays ofTSIM consist of integer values prescribing
(a) the category at each node, (b) azimuthal direction angles rounded to nearest degree, and
(c) dip direction angles rounded to nearest tenth of a degree. To conserve memory usage, disk
space, and input/output time, these arrays have been declared inTSIM.inc as 1-byte variables
instead of the default 4-byte type. The one-byte integers may range from -128 to 127. However,
the integer*1 variable type is not an ANSI FORTRAN standard, although some compilers
(e.g., DEC and SGI) support it. In other cases (e.g., SUN), alogical*1 variable type can
be used to store 1-byte integer values. Therefore, the user may need to customize the variable
declaration statement for the arrayssim , iaz , andð[ðP in TSIM.inc . One can still use the
standardinteger*4 or, alternatively, aninteger*2 declaration.

Also, because 1-byte integer or logical variables types are not standard FORTRAN, the
binary (*.bgr ) files may not transfer across different computer systems.

Output

The output fromTSIM can be produced in either ASCII or a compact binary formats.TSIM
assigns negative values to any grid block with a category determined directly by conditioning
data, which facilitates highlighting and understanding of the impact of conditioning data.
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CHUNK displays conditional simulations produced byTSIM in color or grayscale 3-D per-
spective using the PostScript graphical language.CHUNK expects a 3-D array of integer values
in the binary grid format, as produced byTSIM . Display of the simulation may be broken apart
(exploded) into several sub-volumes (chunks), any number of which may be removed to reveal
internal architecture. Grid blocks that occur on the edge of the simulation, which are prone to
artifactual results, may be stripped away to reveal more representative surfaces.

Before runningCHUNK , the user must

1. Create a 3-D array of integer values in the binary grid format, such as a realization produced
by TSIM .

2. Set up a parameter file.

3. Check array dimension settings inchunk.inc.

Parameter File

Figure 17 shows an example parameter file forCHUNK , with parameters described in Table
8 and resulting graphical output shown in Figure 18.

Implementation Notes

î Line 4 – The option for 2, 4 or 8-bit graphics permits different numbers of possible col-
ors or grayshades. The possible number of grayshades is2?Kð| where?Kð| is the number
of bits selected. Therefore, 2-bit graphics permits 4 grayshades, 4-bit graphics permits 16
grayshades, and 8-bit graphics permits 256 grayshades. The possible number of colors is
2Eôf?Kð|ä, which yields 64 for 2-bit, 4096 for 4-bit, and 16,777,216 for 8-bit. In general, 4-bit
graphics is more than adequate. Grayshade maps are more likely to need 8-bit graphics. If
the number of nodes is very large, 2-bit graphics might be useful for speeding up I/O, cutting
down file size, or dealing with an architectural limit in PostScript mentioned below.

î Line 5 – Colorrgb (red, green, blue) values for background, axes, and title range from 0.0
to 1.0. A value of 1.0 denotes full intensity. For example,rgb values are for red=(1., 0., 0.),



0                                       /1=landscape
0.35 0.40                               /x,y plot translation (inches)
2.25 1.90                               /x,y legend translation (inches)
4        1                              /nbit:2,4 or 8; color?(=1)
1. 1. 1.    0. 0. 0.   0. 0. 0.         /bkgr, title, axes rgb
../../llnl/sim/simq.bgr                 /input binary grid file
2 2 2                                   /# x,y,z chunks
0. 150. 0.                              /x,y,z spacing betw. chunks
1                                       /# of chunks to crop
8                                       /chunk#’s to crop
../../manual/simq.ps                    /output .ps file
8                                       /# categories: cut, clr/gray
-4.0  13 13 8
-3.0  13 7 16
-2.0  13 5  1
-1.0  1  1  1
1.0   5   5  5
2.0   16  8  1
3.0   16 10 16
4.0   16 16 11
2  -2  -3                               /shading: XY,XZ,YZ ; +=light
-181.5 -305.   -18.15                   /Xmin,Ymin,Zmin
3. 10. 0.3                              /dX, dY, dZ
5 5 5 5 5 5                             /cropping: xl,xr,yl,yr,zl,zr
150. 150. 30.                           /X,Y,Z scales (units/inch)
150. 150. 10.                           /X,Y,Z label increments
0 0 0                                   /X,Y,Z decimal places
10 10 10                                /X,Y,Z tics per label
Strike (m)                              /X title
Dip  (m)                                /Y title
Vertical (m)                            /Z title
1.00                                    /Data scale factor
                                        / title, line 1
LLNL Aquifer System                     / title, line 2
0.95 -0.16  0.8 0.35                    /concat parameters
1                                       /legend? (1=yes)
4 4 1                                   /# of cats; nrow,ncol
1.6 2.0                                 /height & width
5                                       /category #
debris flow                             /label
6                                       /category #
floodplain                              /label
7                                       /category #
levee                                   /label
8                                       /category #
channel                                 /label

Figure 17. Example parameter file for CHUNK.
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Figure 18. Example PostScript graphical output from CHUNK.



Line Description
1 page orientation: 1=landscape, portrait otherwise
2 x, y plot translation (inches)
3 x, y legend translation (inches)
4 bits per pixel (2, 4, or 8); color=1, grayscale=0
5 red-greed-blue (rgb) color (0-1) for: background; title; and axes
6 binary grid input file name
7 # of chunks in{, |, and} direction
8 {> |> } spacing between chunks
9 # of chunks to crop (zero if none)
10 chunk #’s to crop (put dummy value if line nine is zero)
11 postscript output file name
13 # of categories (in ascending numerical order)=ncut
14 to 13+ncut category and corresponding rgb values
14+ncut shading:{|, {}, and|} plane ( + to lighten, - to darken)
15+ncut {, |, and} minimum values for grid
16+ncut {, |, and} grid spacing
17+ncut # layers to crop in{min,{max,|min, |max,}min, }max directions
18+ncut {, |, and} scales (units/inch)
19+ncut {, |, and} label increment
20+ncut {, |, and} # of decimal places in label
21+ncut {, |, and} tics per label
22+ncut { title
23+ncut | title
24+ncut } title
25+ncut data scale factor
26+ncut Title line #1 (leave blank line if not used)
27+ncut Title line #2 (leave blank line if not used)
28+ncut transformation parameters a, b, c, and d:{3 @ d{. f|; |3 @ e{. g|
29+ncut legend? 0=no, 1=yes
30+ncut # of categories (ncat) for legend; # rows, columns
31+ncut height and width of legend
32+ncut category #
33+ncut category label
34+ncut to end (repeat format of two previous lines)

Table 8. Description of parameters for CHUNK.
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green=(0.,1.,0.), blue=(0.,0.,1.), yellow=(1.,1.,0.), cyan=(0.,1.,1.), and magenta=(1.,0.,1.).
Grayshades can be produced by setting allrgb intensities equal with (0.,0.,0.)=black and
(1.,1.,1.)=white.

î Line 10 - Numbering of chunks is based on order in which they are drawn, from lower back
left to upper front right, cycling byn%,ý+, andn5.

î Lines 14 to 13+ncut– Grayshade andrgb intensities are specified by integer values of
(1,2,3,4) for 2-bit graphics, (1,2,3,...,16) for 4-bit graphics, and (1,2,3,...,256) for 8-bit graph-
ics. These values are then scaled to intensities ranging from 0.0 and 1.0. If a grayshade image
is requested (second parameter in line 4 set to zero), only one value per line is needed (versus
three per line for color).

î Line 17+ncut - Use these settings to crop off layers on the outer edges of a realization. Edge
effects may mask more representative surfaces underneath.

î Line 28+ncut – The@, M, U, and_ transformation parameters used to create the quasi 3-
D perspective should maintain@2 n U2 é � andM2 n _2 é � to preserve%c +c 5 scaling
relationships.

î Architectural Limit – Note that Postscript contains an architectural limit of 65535 elements
in any array or string. What this means forCHUNK is that garbled results will occur on any
face of a chunk that utilizes more than 262140 bits. One can get around this limitation by
dividing the image into more chunks and/or using less bits per pixel.

Include File

The file chunk.inc is used to dimension arrays ofCHUNK . The main array setting controls
the size of the grid that can be visualized. If not familiar with the dimension settings, the user
should checkchunk.inc, reset dimensions (if necessary), and recompilechunk.f(or).

IMPORTANT! CHUNK reads in the 3-D simulation array produced byTSIM . Recall that
the variable type for the simulation array was set inTSIM.inc , so the corresponding variable
type for the 3-D array specified inchunk.inc and read intoCHUNK must be the same! There-
fore, whether your system acceptsinteger*1 , logical*1 , or whatever, just make sure
that both thesim array inTSIM.inc and theival1 array inchunk.inc are declared as the
same variable type.



9 PostScript Basics

Regular PostScript (*.ps) Files

The output files fromGRAFXX andCHUNK are produced in the PostScript (PS) graphical
language. Inevitably, the user will need or want to modify the graphical output. In many cases,
modifications can be made quite simply by editing the ASCII format PS file (*.ps). Some basic
properties which are useful for editing PS files are:

î All text strings are surrounded by parentheses. One can modify the text string by searching
for (finding) it, then modifying the text string within the parentheses.

î On a line previous to a text string, a command such as234.00 489.00 m designates the
X,Y page coordinates of the text string in 72nds of an inch. One can modify the coordinates
to move the location of the text string.

î A command such as72 144 translate will translate subsequent graphics in the file
by the X,Y page units specified.

î A command such as2.0 2.0 scale will scale subsequent graphics by factors of 2.0 in
the X and Y page directions.

î The commandsfindfont , scalefont , andsetfont find, scale, andset the current
font.

Further details can be found in many reference texts such as the PostScript Language Ref-
erence Manual (Adobe Systems Incorporated, 1990).

Encapsulated PostScript (*.eps) Files

Although regular PS files can be directly interpreted by printers and on-screen viewers, they
usually are not readily incorporated into word processing or slide presentation programs. The
Encapsulated PostScript (EPS) format, however, is quite portable. The regular PS files (*.ps)
produced byGRAFXX andCHUNK can be converted to EPS files (*.eps) by adding necessary
header and footer information. This information can be added using the programps2eps.f(or).

BoundingBox

The most important of the added EPS information is a ‘‘BoundingBox,’’ which specifies the
lower left andupper right X,Y corner coordinates of the plot in units of 1/72 of an inch. The
BoundingBox provides an opportunity to crop unneeded blank space surrounding the plot.
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simq.ps                                 /postscript input file
simq.eps                                /encapsulated postscript file
77 251 548 583                          /bounding box (in inches)
Steve Carle                             /creator
9/9/97                                  /date
3:00PM                                  /time

Figure 19. Example parameter file for PS2EPS.

An obvious way to define a suitable BoundingBox is to print out the PS file, then measure
the displacements of the desired lower left and upper right corners relative to the lower left
corner of the page.

An easier way to define a BoundingBox is to employ the Ghostview previewer, which
displays PS or EPS files on screen. In the upper left corner, Ghostview tracks plot coordinates
in units of 1/72 of an inch whenever the Mouse-driven crosshairs are located on the screen view
of the plot. Thus, one can find suitable BoundingBox coordinates by moving the crosshairs to
the desired lower left and upper right corners.

PS2EPS

Theps2eps.f(or)program is implemented in the same manner as all other T-PROGS programs.
An example parameter file is shown in Figure 19, with parameters described in Table 9.

Line Description
1 input PostScript file name
2 output Encapsulated PostScript file name
3 BoundingBox in 72nds of an inch: lower left X,Y; upper right X,Y
4 name of plot creator
5 date
6 time

Table 9. Description of parameters for PS2EPS.
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The following examples are given to help reinforce procedures for implementing T-PROGS.
For some, such working examples will provide the quickest route toward understanding how
to obtain results with T-PROGS.

GSLIB’s true.dat

Thetrue.dat data set in GSLIB provides a widely accessible ‘‘exhaustive’’ data set that is use-
ful for testing geostatistical techniques. In applying an indicator cross-variogram-based geo-
statistical approach, Goovaerts (1996) dividedtrue.dat into four categories by cutoff values as
follows:

category 1 = second highest 40%

category 2 = highest 30%

category 3 = second lowest 20%

category 4 = lowest 10%

As such, the categories were treated as facies defining an intermediate scale of permeability
heterogeneity.

The goal of this example is to generate a 3-D realization having an isotropic pattern of spatial
variability similar to the 2-Dtrue.dat data set.

true.dat

0 25 50
0

25

50
1 (40%)

2 (30%)

3 (20%)

4 (10%)
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Step 1 – Put data into GEOEAS format

 true.dat categorized by 0.15 0.44 and 2.12 cutoffs
 7
 x
 y
 z
 1=2nd highest 40%
 2=highest 30%
 3=2nd lowest 20%
 4=lowest 10%
     1.00000    1.00000  0. 0 1 0 0
     2.00000    1.00000  0. 0 1 0 0
     3.00000    1.00000  0. 0 1 0 0
     4.00000    1.00000  0. 1 0 0 0
     5.00000    1.00000  0. 0 0 0 1
     6.00000    1.00000  0. 0 0 0 1
     7.00000    1.00000  0. 0 0 1 0
     8.00000    1.00000  0. 0 0 1 0
     9.00000    1.00000  0. 0 0 1 0
    10.00000    1.00000  0. 0 0 1 0
     11.0000    1.00000  0. 0 0 1 0
     12.0000    1.00000  0. 0 0 1 0
.
.
.
etc.

Step 2 – Calculate isotropic transition probabilities using GAMEAS

It is assumed that the pattern of spatial variability is isotropic and, thus, does not depend on di-
rection. The omni-directional statistics are computed by employing a large azimuth bandwidth
and an azimuth angle tolerance of slightly greater than 90á.

START OF PARAMETERS
../true/truecat.eas                     /input file
1 2 3                                   /x,y,z columns
4 4 5 6 7                               /nvar, var1,2,3,... columns
-1. 2.                                  /vmin, vmax
../true/tp.eas                          /output file
25                                      /# lags
1.                                      /lag spacing
0.5                                     /lag tolerance
1                                       /ndir
0.2 90.1 10000000.  0.0 22.50 0.25      /az,daz,azbw;dip,ddip,dipbw
16                                      /# of bivariate statistics
1 1  11                                 /j,k, 11=tp
1 2  11
1 3  11
1 4  11
2 1  11
2 2  11
2 3  11
2 4  11
3 1  11
3 2  11
3 3  11
3 4  11
4 1  11
4 2  11
4 3  11
4 4  11

Step 3 – Plot the transition probability data matrix using GRAFXX

Plot the transition probability data before proceeding to modeling spatial variability. The quality
of the data will influence the choice of modeling approach.
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0                                       /symmetry check (1=sym)
0.20 0.20                               /dx dy between plots (inches)
0                                       /line at zero? 1=yes
1                                       /number of input files
../../true/tp.eas                       /input file 1
-10 0.40  0 1.00                        /file 1: marker, lw, dash, gray
../../true/tp.ps                        /output file
4                                       /number of categories
0. 20. -0.1 1.0                         /Xmin,Xmax,Ymin,Ymax
0 1                                     /# of X,Y decimal places
15.   0.825                             /X,Y scales (units/inch)
1.0                                     /Data scale factor
0.0                                     /axes gray level
5.  0.5                                 /X,Y label increments
5     5                                 /X,Y tics per label
Lag (grid units)                        /X title
                                        /Y title
0                                       /1= titles for each plot
1                                       /X title variable 1
1                                       /Y title variable 1
2                                       /X title variable 2
2                                       /Y title variable 2
3                                       /X title variable 3
3                                       /Y title variable 3
4                                       /X title variable 4
4                                       /Y title variable 4
                                        /title, line 1
Transition Probability                  /title, line 2
1                                       /1=plot legend
6.5                                     /width of legend (inches)
Measured                                /name of variable 1

Lag (grid units)

1
2

3

1

4

0 5 10 15 20

0.0

0.5

1.0

2 3 4

Transition Probability

Measured

Step 4 – Model spatial variability using MCMOD

In this example, option 2 is initially employed using transition probability data for the second
lag ({û ' 2é2) to model spatial variability in all principal directions.

4                                          /# of categories
0.4016 0.3004 0.2008 0.0972                /proportions
2                                          /background category
../true/mcmod.dbg                          /name of debugging file
../true/tpxy2.bgr                          /output file for 3-D model
../true/det2.bgr                           /output file for determinant
0.002   0.002 0.002                        /determinant extent for 3-D model
1. 1. 1.                                   /dhx,dhy,dhz for 3-D model
../true/tpxm2.eas                          /X-direction output file
201     0.10                               /X-Direction: # lags, spacing
2                                          /1=r,2=d,3=etp,4=etf,5=i,6=p,7=f
../true/tp.eas                             /data file
2                                          /lag
../true/tpym2.eas                          /Y-direction output file
100     0.25                               /Y-Direction; # lags, spacing
2                                          /1=r,2=d,3=etp,4=etf,5=i,6=p,7=f
../true/tp.eas                             /data file
2                                          /lag
../true/tpzm2.eas                          /Z-direction output file
100   0.25                                 /Z-Direction: # lags, spacing
2                                          /1=r,2=d,3=etp,4=etf,5=i,6=p,7=f
../true/tp.eas                             /data file
2                                          /lag
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Step 5 – Examine debugging output from MCMOD

Warnings are given that several off-diagonal entries have negative transition rates (Don’t panic!).
Clearly, this categorization oftrue.dat data set yields very strong juxtapositional tendencies of
2 $ � $ ô $ e $ ô $ � $ 2. The negative transition rates are caused by very high
transition probabilities for�? 2 andô? e at the second lag ({û ' 2é2).

The debugging output contains useful interpretive information. Juxtapositional tendencies
appear fairly symmetric, because opposing off-diagonal entries of embedded transitionfrequen-
ciesare similar in magnitude. The symmetry is also evident in the coefficients of the transition
rates with respect to independent transition frequencies, which also indicate the strong jux-
tapositional tendencies between� ? 2 andô ? e by coefficients much greater than unity.
Transition rates of zero or less indicate that the categories are rarely, if ever, juxtaposed next to
each other.

At the bottom of the debugging file, the lateral extent of the 3-D model is given in increments
of nodal spacing. Make sure the lateral extent is large (or small) enough to encompass ranges of
correlation for most or all of the categories. Recall that reducing the determinant limit increases
the lateral extent of the 3-D model.

 MCMOD debugging file
                     
Parameter file: mcmod.par
Number of categories: 4
Proportions:  0.4016  0.3004  0.2008  0.0972
Background category: 2
                      
------- X-DIRECTION: -------
Method - option 2: trans. prob. at specified lag
1-D model output file: ../goofball/tpxm2.eas
WARNING: Off-diagonal Transition Rate   1  2         is too large for column
WARNING: Off-diagonal Transition Rate   1  4         is negative.
WARNING: Off-diagonal Transition Rate   2  1         is too large for row  2
WARNING: Off-diagonal Transition Rate   2  3         is negative.
WARNING: Off-diagonal Transition Rate   3  2         is negative.
WARNING: Off-diagonal Transition Rate   3  4         is too large for column
WARNING: Off-diagonal Transition Rate   4  1         is negative.
WARNING: Off-diagonal Transition Rate   4  3         is too large for row  4
                                                                            
Rate Matrix for X-Direction:
 -0.552953  0.251718  0.330448 -0.029212
  0.339745 -0.285394 -0.063882  0.009531
  0.653765 -0.086431 -0.972821  0.405488
 -0.115940  0.020553  0.841820 -0.746433
                                        
embedded transition probabilities:
  1.000000  0.455224  0.597606 -0.052830
  1.190444  1.000000 -0.223839  0.033395
  0.672030 -0.088846  1.000000  0.416816
 -0.155326  0.027535  1.127791  1.000000
                                        
embedded transition frequencies:
  0.385736  0.175596  0.230518 -0.020378
  0.177281  0.148920 -0.033334  0.004973
  0.228031 -0.030147  0.339317  0.141433
 -0.019575  0.003470  0.142133  0.126027
 entropy=   -1032.46
                    
w.r.t. independent transition freqs:
(    1.8085)     2.2039      0.9605     -0.3085
     2.2250 (    3.5039)    -0.6139      0.3327
     0.9501     -0.5552 (    1.0279)     3.1416
    -0.2963      0.2322      3.1571 (    1.3397)
                                                
w.r.t. volumetric proportions:
(    1.8085)     0.9068      1.7809     -0.3252
     2.0738 (    3.5039)    -0.7799      0.2404
     1.3374     -0.2364 (    1.0279)     3.4272
    -0.3492      0.0828      5.0706 (    1.3397)
                                                
w.r.t. # of embedded occurrences
(    1.8085)     1.8777      1.0818     -0.2575
     2.6266 (    3.5039)    -0.5614      0.2255
     1.1510     -0.3942 (    1.0279)     2.1851
    -0.3519      0.1616      2.9048 (    1.3397)
.
.
.
 Constructing 3-D transition probability model
 # of lags in +x,+y,+z direction =  7  8  8
 total # of lags =  4335

Step 6 – Compare measured and modeled transition probabilities

The comparison is accomplished by slight modifications to theGRAFXX parameter file used
in step 3.
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0                                       /symmetry check (1=sym)
0.20 0.20                               /dx dy between plots (inches)
0                                       /line at zero? 1=yes
2                                       /number of input files
../../true/tp.eas                       /input file 1
-10 0.40  0 1.00                        /var 1: marker, lw, dash, gray
../../true/tpxm2.eas                    /input file 2
0 1.0  0 0.00                        /var 2: marker, lw, dash, gray
../../true/tpm.ps                       /output file
4                                       /number of categories
0. 20. -0.1 1.0                         /Xmin,Xmax,Ymin,Ymax
0 1                                     /# of X,Y decimal places
15.   0.825                             /X,Y scales (units/inch)
1.0                                     /Data scale factor
0.0                                     /axes gray level
5.  0.5                                 /X,Y label increments
5     5                                 /X,Y tics per label
Lag (grid units)                        /X title
                                        /Y title
0                                       /1= titles for each plot
1                                       /X title variable 1
1                                       /Y title variable 1
2                                       /X title variable 2
2                                       /Y title variable 2
3                                       /X title variable 3
3                                       /Y title variable 3
4                                       /X title variable 4
4                                       /Y title variable 4
                                        /title, line 2
Transition Probability                  /title, line 2
1                                       /1=plot legend
6.5                                     /width of legend (inches)
Measured                                /name of variable 1
Markov Chain                            /name of variable 2
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Step 7 - Generate a 3-D realization using TSIM

A Dfû Dfû Df realization is generated assuming isotropy.

4                                       /number of categories
0.4 0.3 0.2 0.1                         /proportions
../true/sim3d.bgr                       /output file
1                                       /output format: 1=binary, 2=ascii
1                                       /debugging level
tpsim.dbg                               /debugging file
3251                                    /seed
1                                       /number of simulations
1.0     50     1.0                      /xmin, nx+, xsiz
1.0     50     1.0                      /ymin, ny+, ysiz
-24.    50     1.0                      /zmin, nz+, zsiz
1  4                                    /ndmin, ndmax
1                                       /ibasis:0=cov,1=tp
0.001                                   /wratio
../true/tp3d.bgr                        /trans. prob. model file
../true/det3d.bgr                       /determinant file
../true/datcat.eas                      /input data file
0. 0.                                   /azimuths: coord, true
0. 0.                                   /dip:  coord, true
junkaz.bgr                              /azimuth int*1 file
junkdip.bgr                             /dip int*1 file
-1    0.00001  0                        /maxit; tol; -1=weight,1=lag1
0.05                                    /quenching determinant limit
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Step 8 - View realization using CHUNK

0     0                                 /1=landscape; 1=11x17
-0.5 0.                                 /x,y plot translation (inches)
3.50 2.50                               /x,y legend translation (inches)
4        0                              /nbit 2,4,8; color(1) or gray(0)
1. 1. 1.    0. 0. 0.   0. 0. 0.         /bkgr, title, axes rgb
../../true/sim3d.bgr                    /input binary grid file
1 1 2                                   /# x,y,z chunks
0.  0. 40.                              /X,Y,Z spacing betw. chunks
0                                       /# of chunks to crop
1                                       /chunk#’s to crop
../../true/true3d.ps                    /output .ps file
-128. 127.                              /gmin gmax
8                                       /# cutoffs: cut, clr/gray
-4.0  16
-3.0  13
-2.0   8
-1.0   1
 1.0   1
 2.0   8
 3.0  13
 4.0  16
1  -2  -1                               /shading: XY,XZ,YZ ; +=light
0.  0. -24.5                            /Xmin,Ymin,Zmin
1. 1. 1.                                /dX, dY, dZ
0 0 0 0 0 0                             /cropping: xl,xr,yl,yr,zl,zr
20. 20. 20.                             /X,Y,Z scales (units/inch)
20. 20. 20.                             /X,Y,Z label increments
0 0 0                                   /X,Y,Z decimal places
5 5  5                                  /X,Y,Z tics per label
x (ft)                                  /X title
y (ft)                                  /Y title
z (ft)                                  /Z title
1.00                                    /Data scale factor
3-D conditional simulation              / title, line 1
based on "true.dat" data set            / title, line 2
0.92  -0.4 0.7 0.48                     /concat parameters
2  0                                    /legend? (0=no), vert?
4 4 1                                   /# of cats; nrow,ncol
2.0 2.0                                 /height & width
5                                       /category 1
1 (40%)                                 /label
6                                       /category 2
2 (30%)                                 /label
7                                       /category 3
3 (20%)                                 /label
8                                       /category 4
4 (10%)                                 /label
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LLNL Data Set

The Lawrence Livermore National Laboratory (LLNL) data set consists of about 5,500 m of
semi-continuous vertical profiles (logs) of core descriptions of alluvial sediments obtained from
125 boreholes drilled for hydrogeologic characterization of the shallow aquifer system under-
lying LLNL (Qualheim, 1988). Lithofacies were categorized asdebris flow(poorly sorted clay,
silt, sand, gravel),floodplain (clay and silt),levee(silty fine sand), andchannel (moderately
to well sorted sand and gravel) deposits. This categorization was based on geologic interpre-
tation of the depositional system with consideration for contrasts in hydrogeologic properties,
to serve as a geologically sound basis for defining ‘‘hydrofacies’’ in detailed 3-D models of the
groundwater flow system (Noyes, 1990).

Step 1 – Put data into GEOEAS format

 Data
 7
  x    = easting
  y    = northing
  z    = elevation above mean sea level
 1 = debris flow
 2 = floodplain
 3 = levee
 4 = channel
    2132.8    2487.4    137.07   0   1   0   0
    2132.8    2487.4    136.77   0   1   0   0
    2132.8    2487.4    136.47   0   1   0   0
    2132.8    2487.4    136.17   0   1   0   0
    2132.8    2487.4    135.87   1   0   0   0
    2132.8    2487.4    135.57   1   0   0   0
    2132.8    2487.4    132.27   0   1   0   0
    2132.8    2487.4    131.97   0   1   0   0
    2576.2    2695.5    186.48   0   1   0   0
    2576.2    2695.5    182.28   0   0   0   1
    2576.2    2695.5    181.98   0   0   0   1
    2576.2    2695.5    181.68   0   0   0   1
    2576.2    2695.5    181.38   0   0   0   1
    2576.2    2695.5    181.08   0   1   0   0
    2576.2    2695.5    175.98   1   0   0   0
    2576.2    2695.5    175.68   0   1   0   0
    2576.2    2695.5    175.38   0   1   0   0
    2576.2    2695.5    112.98   0   1   0   0
.
.
.

Step 2 – Calculate vertical transition probabilities using GAMEAS

START OF PARAMETERS
data.eas                                /input file
1 2 3                                   /x,y,z columns
4 4 5 6 7                               /nvar, var1,2,3,... columns
-1. 2.                                  /vmin, vmax
datatpz.eas                             /output file
41                                      /# lags
0.3000                                  /lag spacing
0.1500                                  /lag tolerance
1                                       /ndir
0.0 90. 0.25 -90.0 22.50 0.25           /az,daz,azbw;dip,..,..
16                                      /# of bivariate statistics
1 1  11                                 /j,k, 11=tp
1 2  11
1 3  11
1 4  11
2 1  11
2 2  11
2 3  11
2 4  11
3 1  11
3 2  11
3 3  11
3 4  11
4 1  11
4 2  11
4 3  11
4 4  11
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Step 3 – Plot vertical transition probabilities using GRAFXX

0                                       /symmetry check (1=sym)
0.20 0.20                               /dx dy between plots (inches)
0                                       /line at zero? 1=yes
1                                       /number of input files
../../llnl/tp/llnl1195tpz.eas           /input file 1
-10  0.55 0 1.                          /file 1: marker, lw, dash, gray
../../manual/llnl/llnltpz.ps            /output file
4                                       /number of categories
0. 6. 0.0 1.0                           /Xmin,Xmax,Ymin,Ymax
0 1                                     /# of x,y decimal places
5.4   0.9                               /X,Y scales (units/inch)
1.0                                     /Data scale factor
0. 0. 0.                                /axes color
3.  0.5                                 /X,Y label increments
3    5                                  /X,Y tics per label
Lag (m)                                 /X title
                                        /Y title
0                                       /1= titles for each plot
debris fl                               /X title variable 1
debris fl                               /Y title variable 1
floodplain                              /X title variable 2
floodplain                              /Y title variable 2
levee                                   /X title variable 3
levee                                   /Y title variable 3
channel                                 /X title variable 4
channel                                 /Y title variable 4
                                        /title, line 1
Transition Probability - Vertical       /title, line 2
1                                       /1=plot legend
7.5                                     /width of legend (inches)
Measured                                /label for file 1 data
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Step 4 – Calculate lateral transition probabilities using GAMEAS

Although the alluvial fan facies architecture is expected to be highly anisotropic, the lateral
transition probabilities were calculated as if lateral isotropy were assumed. The anisotropy
directions in the LLNL alluvial system substantially vary because of radial fan morphology,
variation in fan source location, fan commingling, fluvial meandering, and deformation. The
isotropic calculation was made under the assumption that the resulting transition probabilities
would primarily reflect an upper limit to the strike-direction spatial continuity. It would also
prescribe a lower limit to the dip-direction spatial continuity.
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START OF PARAMETERS
../llnl/data/llnl1195.eas               /input file
1 2 3                                   /x,y,z columns
4 4 5 6 7                               /nvar, var1,2,3,... columns
-1. 2.                                  /vmin, vmax
../llnl/tp/llnltpx.eas                  /output file
25                                      /# lags
3.00                                    /lag spacing
1.5000                                  /lag tolerance
1                                       /ndir
0.0 90. 10000000.  0.0 22.50 0.30       /az,daz,azbw; dip,ddip,dipbw
16                                      /# of bivariate statistics
1 1  11                                 /j,k, 11=tp
1 2  11
1 3  11
1 4  11
2 1  11
2 2  11
2 3  11
2 4  11
3 1  11
3 2  11
3 3  11
3 4  11
4 1  11
4 2  11
4 3  11
4 4  11

Step 5 – Plot lateral transition probabilities using GRAFXX

0                                       /symmetry check (1=sym)
0.20 0.20                               /dx dy between plots (inches)
0                                       /line at zero? 1=yes
1                                       /number of input files
../../llnl/tp/llnltpx.eas               /input file 1
-10  0.5 0 0.                           /marker, lw, dash, gray
~/geostats/manual/llnl/llnltpx.ps       /output file
4                                       /number of categories
0. 50. 0.0 1.0                          /Xmin,Xmax,Ymin,Ymax
0 1                                     /# of X, Y decimal places
45.   0.9                               /X,Y scales (units/inch)
1.0                                     /Data scale factor
0. 0. 0.                                /axes color
25.  0.5                                /X,Y label increments
5    5                                  /X,Y tics per label
Lag (m)                                 /X title
Transition Probability                  /Y title
0                                       /1= titles for each plot
debris fl                               /X title variable 1
debris fl                               /Y title variable 1
floodplain                              /X title variable 2
floodplain                              /Y title variable 2
levee                                   /X title variable 3
levee                                   /Y title variable 3
channel                                 /X title variable 4
channel                                 /Y title variable 4
                                        /title, line 1
Transition Probability - Strike         /title, line 2
1                                       /1=plot legend
8.5                                     /width of legend (inches)
Data
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Step 6 – Develop 1- and 3-D Markov Chain models using MCMOD

The following procedure, used to develop the LLNL principal direction models, may guide
application ofMCMOD to typical data sets derived from boreholes:

1. Initially develop the vertical-direction model, using either option 1, 2, or 3. For the strike and
dip directions, arrive at plausible mean lengths consistent with the transition probability data
(if available) to define the diagonal entries. For the off-diagonal entries, assume symmetry
and use option 3 to estimate embedded transition probabilities. By assuming symmetry
and a background category, only three of the twelve off-diagonal transition rates need to be
prescribed for a four-category system (only one of six for a three-category system).

2. Look at the debugging output file fromMCMOD , which includes other interpretations yield-
ing an equivalent Markov chain model. Option 3, the embedded transition probability frame-
work, is usually the most interpretable. If necessary, refine the vertical-direction model.

3. For the strike and dip-direction models, initiate the off-diagonal embedded transition proba-
bilities by considering Walther’s Law concepts, that vertical facies successions reflect lateral
facies successions. For the off-diagonal terms needed to complete the strike and dip direc-
tion models, assign the embedded transition probabilities obtained from the vertical model.
Refine the strike and dip direction models as necessary to maintain geologic plausibility,
adherence to probability law, and consistency with transition probability data.

4                                          /# of categories
0.066 0.565 0.190  0.179                   /proportions
2                                          /background category
../llnl/tp/mcmod.dbg                       /name of debugging file
../llnl/tp/tpxyz.bgr                       /output file for 3-D model
../llnl/tp/det.bgr                         /output file for determinant
0.05  0.05  0.05                           /determinant limits for 3-D model
3.0  10.0  0.30                            /dhx,dhy,dhz for 3-D model
../llnl/tp/llnltpxm.eas                    /X-direction output file
200     1.                                 /X-Direction: # lags, spacing
3                                          /option: 1=r,2=d,3=etp,4=etf,5=i
8.0     0.   -1.   -1.
0.      0.    0.    0.
0.027   0.   6.0   -1.
0.041   0.   0.839  10.
../llnl/tp/llnltpym.eas                    /Y-direction output file
200     2.5                                /Y-Direction; # lags, spacing
3                                          /1=r,2=d,3=etp,4=etf,5=i,6=p,7=f
24.     0.   -1.     -1.
 0.     0.    0.      0.
 0.027  0.   20.0    -1.
 0.041  0.    0.839  50.
../llnl/tp/llnltpzm3.eas                   /Z-direction output file
200   0.1                                  /Z-Direction: # lags, spacing
2                                          /option: 1=r,2=d,3=etp,4=etf,5=i
../llnl/tp/llnl1195tpz.eas                 /data file
3                                          /lag #

 MCMOD debugging file
                     
Parameter file: mcmodllnl3.par
Number of categories: 4
Proportions:  0.0660  0.5650  0.1900  0.1790
Background category: 2
                      
                      
------- X-DIRECTION: -------
.
.
.
------- Z-DIRECTION: -------
Method - option 2: trans. prob. at specified lag
1-D model output file: ../llnl/tp/llnltpzm3.eas
WARNING: Off-diagonal Transition Rate   4  2         is negative.
                                                                 
Rate Matrix for Z-Direction:
 -0.871510  0.702561  0.103207  0.065742
  0.079481 -0.435999  0.150644  0.205875
  0.029521  1.073549 -1.227927  0.124857
  0.039128 -0.022367  0.789836 -0.806597
                                        
embedded transition probabilities:
  1.000000  0.806142  0.118423  0.075434
  0.182296  1.000000  0.345514  0.472190
  0.024042  0.874278  1.000000  0.101681
  0.048510 -0.027731  0.979221  1.000000
                                        
embedded transition frequencies:
  0.084396  0.068035  0.009994  0.006366
  0.065889  0.361442  0.124883  0.170669
  0.008230  0.299282  0.342319  0.034807
  0.010276 -0.005875  0.207441  0.211843
 entropy=   -56.8526
                    
w.r.t. independent transition freqs:
(    1.1474)     1.8393      0.3121      0.4138
     1.7813 (    2.2936)     0.5699      1.6207
     0.2570      1.3657 (    0.8144)     0.3819
     0.6679     -0.0558      2.2758 (    1.2398)
.
.
.
 Constructing 3-D transition probability model
 # of lags in +x,+y,+z direction =  7  7  9
 total # of lags =  4275
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Step 7 – Calculate independent or maximum entropy (disorder) model

4                                          /# of categories
0.066 0.565 0.190  0.179                   /proportions
2                                          /background category
../llnl/tp/mcmodtpze.dbg                   /name of debugging file
../llnl/tp/tpxyze.bgr                      /output file for 3-D model
../llnl/tp/dete.bgr                        /output file for determinant
1.000   1.000  1.000                       /determinant limit for 3-D model
3.0 10.0  0.30                             /dhx,dhy,dhz for 3-D model
../llnl/tp/llnltpxme.eas                   /X-direction output file
200     1.                                 /X-Direction: # lags, spacing
5                                          /option: 1=r,2=d,3=etp,4=etf,5=i
8.0     0.     1.     1.
0.     22.965  0.     0.
1.0     0.     6.0    1.
1.0     0.     1.0    10.
../llnl/tp/llnltpyme.eas                   /Y-direction output file
200     2.5                                /Y-Direction; # lags, spacing
5                                          /option: 1=r,2=d,3=etp,4=etf,5=i
24.     0.     1.     1.
 0.    62.665  0.     0.
 1.0    0.    20.0    1.
 1.0    1.     1.    50.
../llnl/tp/llnltpzme3.eas                  /Z-direction output file
200   0.1                                  /Z-Direction: # lags, spacing
5                                          /option: 1=r,2=d,3=etp,4=etf,5=i
1.1474  0.     1.     1.
0.      2.2936 0.     0.
1.0     0.     0.8144 1.
1.0     0.     1.     1.2398

Step 8 – Compare measured and modeled transition probabilities

0                                       /symmetry check (1=sym)
0.20 0.20                               /dx dy between plots (inches)
0                                       /line at zero? 1=yes
5                                       /number of input files
../../llnl/tp/llnltpx.eas               /input file 1
-10  0.5 0 0.                           /marker, lw, dash, gray
../../llnl/tp/llnltpxm.eas              /input file 5
0 1.0 0 0.                              /marker, lw, dash, gray
../../llnl/tp/proptpx.eas               /input file 2
0 0.5 1  0.                             /marker, lw, dash, gray
../../llnl/tp/mltpx.eas                 /input file 3
0 0.5 3  0.                             /marker, lw, dash, gray
../../llnl/tp/llnltpxme.eas             /input file 4
0 1.0  0  0.8                           /marker, lw, dash, gray
~/geostats/manual/llnl/llnltpxm.ps       /output file
4                                       /number of categories
0. 50. 0.0 1.0                          /Xmin,Xmax,Ymin,Ymax
0 1                                     /# of X, Y decimal places
45.   0.9                               /X,Y scales (units/inch)
1.0                                     /Data scale factor
0. 0. 0.                                /axes color
25.  0.5                                /X,Y label increments
5    5                                  /X,Y tics per label
Lag (m)                                 /X title
Transition Probability                  /Y title
0                                       /1= titles for each plot
debris fl                               /X title variable 1
debris fl                               /Y title variable 1
floodplain                              /X title variable 2
floodplain                              /Y title variable 2
levee                                   /X title variable 3
levee                                   /Y title variable 3
channel                                 /X title variable 4
channel                                 /Y title variable 4
                                        /title, line 1
Transition Probability - Strike         /title, line 2
1                                       /1=plot legend
7.5                                     /width of legend (inches)
Data
Model
Prop.
Length
Disorder
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Step 9 – Generate a 3-D realization using TSIM

4                                       /number of categories
0.07 0.56 0.19 0.18                     /proportions
../examples/llnlsim.bgr                 /output file
1                                       /debugging level
tpsim.dbg                               /debugging file
2311                                    /seed
1                                       /number of simulations
1955.292    -200      3.0               /xcenter, nx, xsiz
2692.908    -100     10.0               /ycenter, ny, ysiz
 127.50     -241      0.3               /zcenter, nz, zsiz
1  4                                    /ndmin, ndmax
1                                       /ibasis:0=cov,1=tp
0.001                                   /wratio
../tp/llnltpxyz.bgr                     /trans. prob. model file
../tp/llnldetxyz.bgr                    /spectral radius file
../data/llnl1195.eas                    /input data file
0. 0.                                   /azimuths: coord, true
0. 0.                                   /dip:  coord, true
../examples/llnlaz.bgr                  /azimuth int*1 file
../examples/llnldip.bgr                 /dip int*1 file
4      0.00001  0                       /maXit; tol; -1=no dcl,1=lag1
0.5                                     /quenching determinant limit
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Step 10 – View realization using CHUNK

1                                       /landscape(1) or portrait(0)
3.0 3.5                                 /x y plot translation
3.5 10.0                                /x y legend translation
4        0                              /nbit 2,4,8; color(1)or  gray(0)
1. 1. 1.    0. 0. 0.   0. 0. 0.         /rgb: bkgr, title, axes
../examples/llnlsim.bgr                 /input binary grid file
2 2 2                                   /# x,y,z chunks
330. 0.  110.                           /X,Y,Z spacing betw. chunks
1                                       /# of chunks to crop
8                                       /chunk #’s to crop
../examples/llnlsim.ps                  /output .ps file
10                                      /# of categories
-128.  5                                /value, gray
-4.0  1
-3.0  13
-2.0  16
-1.0  8
1.0   8
2.0   16
3.0   13
4.0   1
127.  14
0  -2    -1                             /shading: XY,XZ,YZ(+light -dark)
-601.5 -1005. 55.05                     /Xmin,Ymin,Zmin
3. 10. 0.3                              /dX, dY, dZ
33 33 40 40 5  83                       /cropping: xl,xu,yl,yu,zl,zu
160. 160. 32.                           /X,Y,Z scales (units/inch)
250. 250. 20.                           /X,Y,Z label increments
0 0 0                                   /X,Y,Z decimal places
5  5 4                                  /X,Y,Z tics per label
Northeast (m)                           /X title
Northwest (m)                           /Y title
Elevation (m)                           /Z title
1.00                                    /Data scale factor
                                        / title, line 2
                                        / title, line 2
.707 -.707   0.95 0.312                 /concat paramters
2  0 0                                  /legend, legend orientation?
4 4 1                                   /# of categories; #rows,cols
1.6 1.0                                 /legend height, width
6                                       /category #
debris flow                             /label
7                                       /category #
floodplain                              /label
8                                       /category #
levee                                   /label
9                                       /category #
channel                                 /label
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LAAPMO4C Data Set

The LAAPMO4C data set consists of continuous vertical profiles (logs) of core descriptions of
fluvial sediments categorized as SM (silty sand), ML (silt), CL/ML (clayey silt or silty clay),
CL/CH (clay or ‘‘fat clay’’).

The goal of this example is to generate a 3-D realization that is consistent with the data and
spatial variability. This example represents a typical hydrogeologic application, where a de-
tailed and realistic hydrogeologic model is needed, but the data, although intensively sampled,
are not adequate to exactly determine the true hydrogeologic structure.

Step 1 – Put data into GEOEAS format

 Data
 7
  x    = easting
  y    = northing
  z    = elevation above mean sea level
 1
 2
 3
 4
    3836.1    1425.4    215.12   0   0   0   1
    3836.1    1425.4    213.12   0   0   0   1
    3836.1    1425.4    211.12   0   0   0   1
    3836.1    1425.4    209.12   0   0   0   1
    3836.1    1425.4    207.12   0   0   0   1
    3836.1    1425.4    205.12   0   0   0   1
    3836.1    1425.4    203.12   0   0   0   1
    3836.1    1425.4    201.12   1   0   0   0
    3836.1    1425.4    199.12   1   0   0   0
    3836.1    1425.4    197.12   1   0   0   0
    3836.1    1425.4    195.12   1   0   0   0
    3836.1    1425.4    193.12   1   0   0   0
    3836.1    1425.4    191.12   1   0   0   0
    3836.1    1425.4    189.12   1   0   0   0
    3836.1    1425.4    187.12   1   0   0   0
    3836.1    1425.4    185.12   0   0   0   1
    5242.6    1494.6    218.71   0   0   0   1
    5242.6    1494.6    216.71   0   0   0   1
    5242.6    1494.6    214.71   0   0   0   1
    5242.6    1494.6    212.71   0   0   0   1
    5242.6    1494.6    210.71   0   0   0   1
    5242.6    1494.6    208.71   0   0   0   1
    5242.6    1494.6    206.71   0   0   0   1
.
.
.

Step 2 – Calculate vertical transition probabilities using GAMEAS

START OF PARAMETERS
../examples/laapmo4c.eas                /input file
1 2 3                                   /x,y,z columns
4 4 5 6 7                               /nvar, var1,2,3,... columns
-1. 2.                                  /vmin, vmax
../examples/laapmo4ctpz.eas             /output file
30                                      /# lags
2.                                      /lag spacing
1.                                      /lag tolerance
1                                       /ndir
0. 90.0 10.  90.0 22.50 1.0             /az,daz,azbw;dip,ddip,dipbw
16                                      /# of bivariate statistics
1 1  11                                 /j,k, 11=tp
1 2  11
1 3  11
1 4  11
2 1  11
2 2  11
2 3  11
2 4  11
3 1  11
3 2  11
3 3  11
3 4  11
4 1  11
4 2  11
4 3  11
4 4  11
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Step 3 – Plot vertical transition probabilities using GRAFXX

0                                       /symmetry check (1=sym)
0.20 0.20                               /dx dy between plots (inches)
0                                       /line at zero? 1=yes
1                                       /number of input files
../examples/laapmo4ctpz.eas             /input file 1
-10 0.40  0 1.00                        /file 1: marker, lw, dash, gray
../examples/tpz.ps                      /output file
4                                       /number of categories
0. 40.  0.0 1.0                         /Xmin,Xmax,Ymin,Ymax
0 1                                     /# of x,y decimal places
30.   0.75                              /X,Y scales (units/inch)
1.0                                     /Data scale factor
0.0                                     /axes gray level
10.  0.5                                /X,Y label increments
5     5                                 /X,Y tics per label
Lag (ft)                                /X title
                                        /Y title
0                                       /1= titles for each plot
SM                                      /X title variable 1
SM                                      /Y title variable 1
ML                                      /X title variable 2
ML                                      /Y title variable 2
CL/ML                                   /X title variable 3
CL/ML                                   /Y title variable 3
CL/CH                                   /X title variable 4
CL/CH                                   /Y title variable 4
                                        /title, line 1
Transition Probability                  /title, line 2
1                                       /1=plot legend
6.5                                     /width of legend (inches)
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Step 4 – Calculate lateral transition probabilities using GAMEAS

In this application, the lateral spatial variability is assumed isotropic, that is, the dip- and strike-
direction patterns of heterogeneity are assumed to be similar. Alternatively, soft information
could have been used to create an anisotropic model.
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START OF PARAMETERS
../examples/laapmo4c.eas                /input file
1 2 3                                   /x,y,z columns
4 4 5 6 7                               /nvar, var1,2,3,... columns
-1. 2.                                  /vmin, vmax
../examples/laapmo4ctpxy.eas            /output file
25                                      /# lags
100.                                    /lag spacing
50.                                     /lag tolerance
1                                       /ndir
0.2 90.1 10000000.  0.0 22.50 1.0       /az,daz,azbw;dip,ddip,dipbw
16                                      /# of bivariate statistics
1 1  11                                 /j,k, 11=tp
1 2  11
1 3  11
1 4  11
2 1  11
2 2  11
2 3  11
2 4  11
3 1  11
3 2  11
3 3  11
3 4  11
4 1  11
4 2  11
4 3  11
4 4  11

Step 5 – Plot lateral transition probabilities using GRAFXX

0                                       /symmetry check (1=sym)
0.20 0.20                               /dx dy between plots (inches)
0                                       /line at zero? 1=yes
1                                       /number of input files
../examples/laapmo4ctpxy.eas            /input file 1
-10 0.40  0 1.00                        /file 1: marker, lw, dash, gray
../examples/tpxy.ps                     /output file
4                                       /number of categories
0. 2000.  0.0 1.0                       /Xmin,Xmax,Ymin,Ymax
0 1                                     /# of x,y decimal places
1500.   0.75                            /X,Y scales (units/inch)
1.0                                     /Data scale factor
0.0                                     /axes gray level
1000.  0.5                              /X,Y label increments
10     5                                /X,Y tics per label
Lag (ft)                                /X title
                                        /Y title
0                                       /1= titles for each plot
SM                                      /X title variable 1
SM                                      /Y title variable 1
ML                                      /X title variable 2
ML                                      /Y title variable 2
CL/ML                                   /X title variable 3
CL/ML                                   /Y title variable 3
CL/CH                                   /X title variable 4
CL/CH                                   /Y title variable 4
                                        /title, line 1
Transition Probability                  /title, line 2
1                                       /1=plot legend
6.5                                     /width of legend (inches)
Measured
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Step 6 – Develop 1- and 3-D Markov Chain models using MCMOD

4                                          /# of categories
0.420 0.221 0.093 0.266                    /proportions
4                                          /background category
../examples/mcmodtp.dbg                    /name of debugging file
../examples/tp3d.bgr                       /output file for 3-D model
../examples/det3d.bgr                      /output file for determinant
0.020   0.020 0.020                        /spectral extent for 3-D model
50. 50. 2.                                 /dhx,dhy,dhz for 3-D model
../examples/tpxm.eas                       /X-direction output file
201     10.                                /X-Direction: # lags, spacing
3                                          /option: 1=r,2=d,3=etp,4=etf,5=i
550.   -1.   -1.    0.
0.30  150.   -1.    0.
0.15  0.5    90.    0.
0.    0.      0.    0.
../examples/tpym.eas                       /Y-direction output file
201     10.                                /Y-Direction; # lags, spacing
3                                          /option: 1=r,2=d,3=etp,4=etf,5=i
550.   -1.   -1.    0.
0.30  150.   -1.    0.
0.15  0.5    90.    0.
0.    0.      0.    0.
../examples/tpzm2.eas                      /Z-direction output file
  201   0.25                               /Z-Direction: # lags, spacing
3                                          /option: 1=r,2=d,3=etp,4=etf,5=i
  9.50   0.67   0.22  0.
  0.53   5.30   0.08  0.
  0.46   0.22   7.00  0.
  0.     0.     0.    0.
                        

Step 7 – Compare measured and modeled transition probabilities

In practice, steps 6 and 7 were implemented repeatedly until a satisfactory fit is obtained. The
following procedure can be useful for developing the principal direction models:

1. First apply option 2 inMCMOD , which fits a Markov chain directly to transition probabil-
ities at a specific lag.

2. Plot the measured and modeled transition probabilities usingGRAFXX .

3. Look at the debugging file output fromMCMOD , which includes other interpretations yield-
ing an equivalent Markov chain model. The embedded transition probability framework
(option 3 inMCMOD ) is usually the most interpretable.

4. Apply option 3 inMCMOD . Starting from equivalent parameters obtained in first model,
adjust the embedded transition probabilities to raise or the lower transition rates. Recall
that background column entries are dictated by the other entries in the same row, and that
background row entries are dictated by the other entries in the same column.
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0                                       /symmetry check (1=sym)
0.20 0.20                               /dx dy between plots (inches)
0                                       /line at zero? 1=yes
1                                       /number of input files
../examples/laapmo4ctpz.eas             /input file 1
-10 0.40  0 1.00                        /file 1: marker, lw, dash, gray
../examples/tpz.ps                      /output file
4                                       /number of categories
0. 40.  0.0 1.0                         /Xmin,Xmax,Ymin,Ymax
0 1                                     /# of x,y decimal places
30.   0.75                              /X,Y scales (units/inch)
1.0                                     /Data scale factor
0.0                                     /axes gray level
10.  0.5                                /X,Y label increments
5     5                                 /X,Y tics per label
Lag (ft)                                /X title
                                        /Y title
0                                       /1= titles for each plot
SM                                      /X title variable 1
SM                                      /Y title variable 1
ML                                      /X title variable 2
ML                                      /Y title variable 2
CL/ML                                   /X title variable 3
CL/ML                                   /Y title variable 3
CL/CH                                   /X title variable 4
CL/CH                                   /Y title variable 4
                                        /title, line 1
Transition Probability                  /title, line 2
1                                       /1=plot legend
6.5                                     /width of legend (inches)
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Step 8 – Generate a 3-D realization using TSIM

4                                       /number of categories
0.420 0.221 0.093 0.266                 /proportions
../examples/sim3d.bgr                   /output file
1                                       /output format: 1=binary, 2=ascii
1                                       /debugging level
tpsim.dbg                               /debugging file
3251                                    /seed
5                                       /number of simulations
3000.     90     50.0                   /xmin, nx, xsiz
1400.     90     50.0                   /ymin, ny, ysiz
140.       50     2.0                   /zmin, nz, zsiz
1  6                                    /ndmin, ndmax
1                                       /ibasis:0=cov,1=tp
0.001                                   /wratio
../examples/tp3d.bgr                    /trans. prob. model file
../examples/det3d.bgr                   /determinant file
../examples/laapmo4c.eas                /input data file
0. 0.                                   /azimuths: coord, true
0. 0.                                   /dip:  coord, true
junkaz.bgr                              /azimuth int*1 file
junkdip.bgr                             /dip int*1 file
 3     0.00001  0                       /maxit; tol; -1=weight,1=lag1
0.30                                    /quenching determinant limit
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Step 9 – View realization using CHUNK

0                                       /landscape(1) or portrait(0)
0.35 0.40                               /x,y plot translation (inches)
2.0 0.7                                 /x,y legend translation (inches)
4        1                              /nbit 2,4,8; color(1) or gray(0)
1. 1. 1.    0. 0. 0.   0. 0. 0.         /rgb: bkgr, title, axes
../examples/laapmo4c.bgr4               /input binary grid file
2 2 2                                   /# x,y,z chunks
0. 1000. 0.                             /X,Y,Z spacing betw. chunks
1                                       /# of chunks to crop
8                                       /chunk#’s to crop
../examples/laapmo4c4.ps                /output .ps file
8                                       /# of categories
-4    1  1 11
-3    1 11 11
-2    1 11  1
-1   11 11  1
 1   16 16  1
 2    1 16  1
 3    1 16 16
 4    1  1 16
3  -3  0                                /shading: XY,XZ,YZ (+light -dark)
3000. 1400. 140.                        /Xmin,Ymin,Zmin
50. 50.  2.                             /dX, dY, dZ
0 4 1 5 0  9                            /cropping: xl,xu,yl,yu,zl,zu
1500. 1500. 150.                        /X,Y,Z scales (units/inch)
2000. 2000. 50.                         /X,Y,Z label increments
0 0 0                                   /X,Y,Z decimal places
10 10 10                                /X,Y,Z tics per label
Easting (ft)                            /X title
Northing (ft)                           /Y title
Elevation (ft)                          /Z title
1.00                                    /Data scale factor
Realization #4                          / title, line 1
LAAPMO4C Data Set                       / title, line 2
0.92  -0.4 0.92 0.4                     /concat parameters
1                                       /legend? (1=yes)
4 2 2                                   /# of cats; nrow,ncol
0.8 2.5                                 /height & width
5                                       /category #
SM                                      /label
6                                       /category #
ML                                      /label
7                                       /category #
CL/ML                                   /label
8                                       /category #
CL/CH                                   /label
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