Cloud-based, Data-enabled, Realtime Interactive Global Groundwater Modeling
  • Home
    • Overview
    • MAGNET Modeling Features
  • MAGNET Network
    • Global Modeling Platform
    • Global Model Network
    • Global User Network
  • Library
    • Research Videos >
      • Real world heterogeneity
      • Random Field Representation
      • Effects of Spatial Heterogeneity
      • Effects of Temporal Variability
      • Effects of Interacting Heterogeneity
      • Effects of Multiscale Heterogeneity
      • Macridispersion Models
      • Monte Carlo Simulations
      • Transport in Complex Aquifers
      • Transport in Fractured Tills
    • Education Videos >
      • Regional Vertical Circulation
      • Seepage Under Dams
      • Aquifer Response to Pumping
      • Law of Refraction
      • FLow in Anisotropic Aquifers
      • Wellhead ​Delineation
      • Connection with Surface Water
      • Stream Aquifer Interaction
      • Artificial Recharge
      • Groundwater Contamination
      • Transport Processes
      • Groundwater Remediation
    • MAGNET USER REFERENCE >
      • Magnet Quick Tutorials
      • Magnet User Manual
    • IGW USER REFERENCE >
      • IGW2D References
      • IGW2D Example Problems
      • IGW3D User Manual
      • IGW3D Tutorials
      • IGW3D Reference Manual
    • IGW Verification >
      • Comparison with Analytical Solutions
      • Comparison with MODFLOW
      • Comparison with Field Observations
    • MGMT USER REFERENCE >
      • MGMT User Manual
      • MGMT Tutorials
    • MGMT Verification
    • Research Publications
    • Inquiry-based Learning
    • Real World Case Studies >
      • Gallery A
      • Gallery B
    • Published MAGNET NETWORK Models
  • Services
    • Advertising with Us
  • Support
    • MAGNET Account >
      • Sign Up
      • Edit Account
    • Frequently asked questions
    • MAGNET Discussion Forum
    • Live Chat
    • Terms & Privacy
    • Contact
    • Meet the Team
  • Career
    • Job Opening
Back to Publication


A Multiscale Assessment of Shallow Groundwater Salinization in Michigan

by Zachary K. Curtis, Hua-Sheng Liao, Shu-Guang Li, Prasanna Venkatesh Sampath, and David P. Lusch

February 2019, Journal of Groundwater, National Groundwater Association

Abstract

Managing nonpoint-source (NPS) pollution of groundwater systems is a significant challenge because of the heterogeneous nature of the subsurface, high costs of data collection, and the multitude of scales involved. In this study, we assessed a particularly complex NPS groundwater pollution problem in Michigan, namely, the salinization of shallow aquifer systems due to natural upwelling of deep brines. We applied a system-based approach to characterize, across multiple scales, the integrated groundwater quantity–quality dynamics associated with the brine upwelling process, assimilating a variety of modeling tools and data—including statewide water well datasets scarcely used for larger scientific analysis. Specifically, we combined (1) data-driven modeling of massive amounts of groundwater/geologic information across multiple spatial scales with (2) detailed analysis of groundwater salinity dynamics and process-based flow modeling at local scales. Statewide “hotspots” were delineated and county-level severity rankings were developed based on dissolved chloride (Cl−) concentration percentiles. Within local hotspots, the relative impact of upwelling was determined to be controlled by: (1) streams—which act as “natural pumps” that bring deeper (more mineralized) groundwater to the surface; (2) the occurrence of nearly impervious geologic material at the surface—which restricts fresh water dilution of deeper, saline groundwater; and (3) the space–time evolution of water well withdrawals—which induces slow migration of saline groundwater from its natural course. This multiscale, data-intensive approach significantly improved our understanding of the brine upwelling processes in Michigan, and has applicability elsewhere given the growing availability of statewide water well databases.

  • Home
    • Overview
    • MAGNET Modeling Features
  • MAGNET Network
    • Global Modeling Platform
    • Global Model Network
    • Global User Network
  • Library
    • Research Videos >
      • Real world heterogeneity
      • Random Field Representation
      • Effects of Spatial Heterogeneity
      • Effects of Temporal Variability
      • Effects of Interacting Heterogeneity
      • Effects of Multiscale Heterogeneity
      • Macridispersion Models
      • Monte Carlo Simulations
      • Transport in Complex Aquifers
      • Transport in Fractured Tills
    • Education Videos >
      • Regional Vertical Circulation
      • Seepage Under Dams
      • Aquifer Response to Pumping
      • Law of Refraction
      • FLow in Anisotropic Aquifers
      • Wellhead ​Delineation
      • Connection with Surface Water
      • Stream Aquifer Interaction
      • Artificial Recharge
      • Groundwater Contamination
      • Transport Processes
      • Groundwater Remediation
    • MAGNET USER REFERENCE >
      • Magnet Quick Tutorials
      • Magnet User Manual
    • IGW USER REFERENCE >
      • IGW2D References
      • IGW2D Example Problems
      • IGW3D User Manual
      • IGW3D Tutorials
      • IGW3D Reference Manual
    • IGW Verification >
      • Comparison with Analytical Solutions
      • Comparison with MODFLOW
      • Comparison with Field Observations
    • MGMT USER REFERENCE >
      • MGMT User Manual
      • MGMT Tutorials
    • MGMT Verification
    • Research Publications
    • Inquiry-based Learning
    • Real World Case Studies >
      • Gallery A
      • Gallery B
    • Published MAGNET NETWORK Models
  • Services
    • Advertising with Us
  • Support
    • MAGNET Account >
      • Sign Up
      • Edit Account
    • Frequently asked questions
    • MAGNET Discussion Forum
    • Live Chat
    • Terms & Privacy
    • Contact
    • Meet the Team
  • Career
    • Job Opening