Cloud-based, Data-enabled, Realtime Interactive Global Groundwater Modeling
  • Home
    • Overview
    • MAGNET Modeling Features
  • MAGNET Network
    • Global Modeling Platform
    • Global Model Network
    • Global User Network
  • Library
    • Research Videos >
      • Real world heterogeneity
      • Random Field Representation
      • Effects of Spatial Heterogeneity
      • Effects of Temporal Variability
      • Effects of Interacting Heterogeneity
      • Effects of Multiscale Heterogeneity
      • Macridispersion Models
      • Monte Carlo Simulations
      • Transport in Complex Aquifers
      • Transport in Fractured Tills
    • Education Videos >
      • Regional Vertical Circulation
      • Seepage Under Dams
      • Aquifer Response to Pumping
      • Law of Refraction
      • FLow in Anisotropic Aquifers
      • Wellhead ​Delineation
      • Connection with Surface Water
      • Stream Aquifer Interaction
      • Artificial Recharge
      • Groundwater Contamination
      • Transport Processes
      • Groundwater Remediation
    • MAGNET USER REFERENCE >
      • Magnet Quick Tutorials
      • Magnet User Manual
    • IGW USER REFERENCE >
      • IGW2D References
      • IGW2D Example Problems
      • IGW3D User Manual
      • IGW3D Tutorials
      • IGW3D Reference Manual
    • IGW Verification >
      • Comparison with Analytical Solutions
      • Comparison with MODFLOW
      • Comparison with Field Observations
    • MGMT USER REFERENCE >
      • MGMT User Manual
      • MGMT Tutorials
    • MGMT Verification
    • Research Publications
    • Inquiry-based Learning
    • Real World Case Studies >
      • Gallery A
      • Gallery B
    • Published MAGNET NETWORK Models
  • Services
    • Advertising with Us
  • Support
    • MAGNET Account >
      • Sign Up
      • Edit Account
    • Frequently asked questions
    • MAGNET Discussion Forum
    • Live Chat
    • Terms & Privacy
    • Contact
    • Meet the Team
  • Career
    • Job Opening
Back to Publication


Understanding Fen Hydrology across Multiple Scales

Sampath, Prasanna Venkatesh; Liao, Hua-Sheng; Curtis, Zachary Kristopher; Herbert, Matthew E.; Doran, Patrick J.; May, Christopher A.; Landis, Douglas A.; Li, Shu-Guang

Volume 30, Issue 19, pp. 3390-3407 September 2016, Hydrological Processes

Abstract

Fens, which are among the most biodiverse of wetland types in the USA, typically occur in glacial landscapes characterized by geo‐morphologic variability at multiple spatial scales. As a result, the hydrologic systems that sustain fens are complex and not well understood. Traditional approaches for characterizing such systems use simplifying assumptions that cannot adequately capture the impact of variability in geology and topography. In this study, a hierarchical, multi‐scale groundwater modelling approach coupled with a geologic model is used to understand the hydrology of a fen in Michigan. This approach uses high‐resolution data to simulate the multi‐scale topographic and hydrologic framework and lithologic data from more than 8500 boreholes in a statewide water well database to capture the complex geology. A hierarchy of dynamically linked models is developed that simulates groundwater flow at all scales of interest and to delineate the areas that contribute groundwater to the fen. The results show the fen receiving groundwater from multiple sources: an adjacent wetland, local recharge, a nearby lake and a regional groundwater mound. Water from the regional mound flows to an intermediate source before reaching the fen, forming a ‘cascading’ connection, while other sources provide water through ‘direct’ connections. The regional mound is also the source of water to other fens, streams and lakes in this area, thus creating a large, interconnected hydrologic system that sustains the entire ecosystem. In order to sustainably manage such systems, conservation efforts must include both site‐based protection and management, as well as regional protection and management of groundwater source areas. Copyright © 2016 John Wiley & Sons, Ltd.

  • Home
    • Overview
    • MAGNET Modeling Features
  • MAGNET Network
    • Global Modeling Platform
    • Global Model Network
    • Global User Network
  • Library
    • Research Videos >
      • Real world heterogeneity
      • Random Field Representation
      • Effects of Spatial Heterogeneity
      • Effects of Temporal Variability
      • Effects of Interacting Heterogeneity
      • Effects of Multiscale Heterogeneity
      • Macridispersion Models
      • Monte Carlo Simulations
      • Transport in Complex Aquifers
      • Transport in Fractured Tills
    • Education Videos >
      • Regional Vertical Circulation
      • Seepage Under Dams
      • Aquifer Response to Pumping
      • Law of Refraction
      • FLow in Anisotropic Aquifers
      • Wellhead ​Delineation
      • Connection with Surface Water
      • Stream Aquifer Interaction
      • Artificial Recharge
      • Groundwater Contamination
      • Transport Processes
      • Groundwater Remediation
    • MAGNET USER REFERENCE >
      • Magnet Quick Tutorials
      • Magnet User Manual
    • IGW USER REFERENCE >
      • IGW2D References
      • IGW2D Example Problems
      • IGW3D User Manual
      • IGW3D Tutorials
      • IGW3D Reference Manual
    • IGW Verification >
      • Comparison with Analytical Solutions
      • Comparison with MODFLOW
      • Comparison with Field Observations
    • MGMT USER REFERENCE >
      • MGMT User Manual
      • MGMT Tutorials
    • MGMT Verification
    • Research Publications
    • Inquiry-based Learning
    • Real World Case Studies >
      • Gallery A
      • Gallery B
    • Published MAGNET NETWORK Models
  • Services
    • Advertising with Us
  • Support
    • MAGNET Account >
      • Sign Up
      • Edit Account
    • Frequently asked questions
    • MAGNET Discussion Forum
    • Live Chat
    • Terms & Privacy
    • Contact
    • Meet the Team
  • Career
    • Job Opening